High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and qualit...High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes.展开更多
Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein...Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents,starch damage,swelling power,pasting characteristics,and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters,the protein content of wheat and the granulation of flour,showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%~14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61,p<0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38μm in size and representing 9.6%~19.3% of the flour weights was correlated positively (r =0 .78,p<0.01) with crumb grain score,whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60,p<0.05) with crumb grain score.展开更多
Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-...Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90℃ of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.展开更多
The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total...The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total starch and amylose content as compared to DF. Starch granules of DF were oval shape with rough surface while DS and PDS were relatively smooth by SEM. According to XRD measurements, FT-IR spectroscopy and 13 C CP/MAS NMR spectroscopy, all samples displayed C-type crystalline pattern, and PDS displayed the highest relative crystallinity and short-range order structure. However, DF contained the greatest content of the amorphous-phase. DF displayed the absorption peaks at 1730 and 1560 cm^-1 related to the characteristic groups of lipid and protein using FT-IR spectroscopy. Furthermore, DF exhibited significantly higher pasting temperature while DS displayed the great peak and breakdown viscosity, as well as PDS had the highest setback and final viscosity, presumably due to the chemical composition and structural differences. DF exhibited the highest gelatinization temperature whereas PDS displayed the greatest gelatinization enthalpy. The pasting and gelatinization properties of flour and starch might be related to the relative crystallinity, short-range order structure or the interactions between starch and its associated compounds. The results allow the improvement in the manufacture of Dioscorea opposita Thunb. flour and starch with desirable pasting and gelatinization properties.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31972005)Xinjiang Uygur Autonomous Region‘Tianshan Talent’Training Plan Project,China(Grant No.2022TSYCCX0063).
文摘High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes.
文摘Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents,starch damage,swelling power,pasting characteristics,and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters,the protein content of wheat and the granulation of flour,showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%~14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61,p<0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38μm in size and representing 9.6%~19.3% of the flour weights was correlated positively (r =0 .78,p<0.01) with crumb grain score,whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60,p<0.05) with crumb grain score.
基金partly supported by H.M. King Bhumibol Adulyadej’s 72nd Birthday Anniversary Scholarship, Graduate School, Chulalongkorn University, Thailandthe Ratchadapisek Somphot Endowment Fund # R-028-2553 for Development of Rice Products for the Agriculture Coorperation under the Chaipattana Foundation Patronage and Faculty of Science Chulalongkorn University, Thailand
文摘Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90℃ of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.
基金Supported by the National Natural Science Foundation of China(No.31701552)Leading Talents Support Program of Science and Technology Innovation in Fujian Province(KRC16002A)Excellent Talents Support Program of Colleges and Universities in Fujian Province(JA14094)
文摘The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total starch and amylose content as compared to DF. Starch granules of DF were oval shape with rough surface while DS and PDS were relatively smooth by SEM. According to XRD measurements, FT-IR spectroscopy and 13 C CP/MAS NMR spectroscopy, all samples displayed C-type crystalline pattern, and PDS displayed the highest relative crystallinity and short-range order structure. However, DF contained the greatest content of the amorphous-phase. DF displayed the absorption peaks at 1730 and 1560 cm^-1 related to the characteristic groups of lipid and protein using FT-IR spectroscopy. Furthermore, DF exhibited significantly higher pasting temperature while DS displayed the great peak and breakdown viscosity, as well as PDS had the highest setback and final viscosity, presumably due to the chemical composition and structural differences. DF exhibited the highest gelatinization temperature whereas PDS displayed the greatest gelatinization enthalpy. The pasting and gelatinization properties of flour and starch might be related to the relative crystallinity, short-range order structure or the interactions between starch and its associated compounds. The results allow the improvement in the manufacture of Dioscorea opposita Thunb. flour and starch with desirable pasting and gelatinization properties.