The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,...The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.展开更多
Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dyna...Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.展开更多
To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injecte...To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.展开更多
By electrical resistance tomography (ERT) the cross sectional profiles of gas hold-up in a φ56mm bubble column are obtained with four designs of gas sparger. The effect of sparger geometry on the bubble distribution ...By electrical resistance tomography (ERT) the cross sectional profiles of gas hold-up in a φ56mm bubble column are obtained with four designs of gas sparger. The effect of sparger geometry on the bubble distribution is re-vealed by applying a sensitivity conjugated gradients reconstruction method (SCG). Experimental results show that over-all hold-up obtained by ERT is generally in good agreement with those measured with the pressure transducer and the ERT system produces informative evidence that the radial profiles of hold-up is very similar to the sparger design in the lower section of bubble column. Meanwhile, the rise velocity of bubble swarm and the Sauter mean bubble size are evaluated using ERT based on dynamic gas disengagement theory. The experimental results are in good agreement with correlations and conventional estimation obtained using pressure transmitter methods.展开更多
Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and ho...Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.展开更多
The thermomechanical behavior of precipitation-hardened aluminum alloy AA7022-T6 was studied using isothermal compression at temperatures of 623−773 K and strain rates of 0.01−1 s^−1.The experimental results indicated...The thermomechanical behavior of precipitation-hardened aluminum alloy AA7022-T6 was studied using isothermal compression at temperatures of 623−773 K and strain rates of 0.01−1 s^−1.The experimental results indicated that dynamic recrystallization(DRX)is a predominant hot deformation mechanism,especially at elevated temperatures and low strain rates.The modified Johnson−Cook(J−C)and the strain compensated Arrhenius-type models were developed to predict the hot flow behavior under different deformation conditions.The correlation coefficients of modified J−C model and the strain compensated Arrhenius-type models were 0.9914 and 0.9972,respectively,their average relative errors(ARE)were 6.074%and 4.465%,respectively,and their root mean square errors(RMSE)were 10.611 and 1.665 MPa,respectively,indicating that the strain compensated Arrhenius-type model can predict the hot flow stress of AA7022-T6 aluminum alloy with an appropriate accuracy.展开更多
A proper constitutive model was developed to predict the hot tensile flow behavior of IMI834 titanium alloy in α+β region. Hot tensile tests were performed at 800–1025 °C and 0.001–0.1 s&...A proper constitutive model was developed to predict the hot tensile flow behavior of IMI834 titanium alloy in α+β region. Hot tensile tests were performed at 800–1025 °C and 0.001–0.1 s<sup>−1</sup>. The constitutive model was developed through an Arrhenius-type equation at strains of 0.08–0.22 to characterize the hot tension behavior. It was found that the activation energies for hot tensile deformation of IMI834 titanium alloy are in the range of 519–557 kJ/mol at different strain values. The accuracy of predicted flow stress curves was evaluated using standard statistical parameters. These curves are appropriately found to be in good agreement with the experimental ones.展开更多
The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the...The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the reasonability of simulation results.Water molecules can spontaneously infiltrate into the nanopores,but an external driving force is generally required to pass through the whole pores.The exit of nanopore has a large obstruction on the water effusion.The flow velocity within the graphene nanochannels does not display monotonous dependence upon the pore width,indicating that the flow is related to the microscopic structures of water confined in the nanopores.Extensive structures of confined water are characterized in order to understand the flow behavior.This simulation improves the understanding of graphene-based nanofluidics,which helps in developing a new type of membrane separation technique.展开更多
Ore particles,especially fine interlayers,commonly segregate in heap stacking,leading to undesirable flow paths and changeable flow velocity fields of packed beds.Computed tomography(CT),COMSOL Multiphysics,and MATLAB...Ore particles,especially fine interlayers,commonly segregate in heap stacking,leading to undesirable flow paths and changeable flow velocity fields of packed beds.Computed tomography(CT),COMSOL Multiphysics,and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers.The formation of fine interlayers was accompanied with the segregation of particles in packed beds.Fine particles reached the upper position of the packed beds during stacking.CT revealed that the average porosity of fine interlayers(24.21%)was significantly lower than that of the heap packed by coarse ores(37.42%),which directly affected the formation of flow paths.Specifically,the potential flow paths in the internal regions of fine interlayers were undeveloped.Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds.Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity(1.8×10^-5 m/s)suddenly increased.Fluid stagnant regions with a flow velocity lower than 0.2×10^-5 m/s appeared in flow paths with a large diameter.展开更多
Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Ba...Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Based on population balance equation, the frame of the dynamic model was established first, which took both hydrate agglomeration and hydrate breakage into consideration.Then, the calculating methods of four key parameters involved in the dynamic model were given according to hydrate agglomeration dynamics.The four key parameters are collision frequency, agglomeration efficiency, breakage frequency and the size distribution of sub particles resulting from particle breakage.After the whole dynamic model was built, it was combined with several traditional solid–liquid flow models and then together solved by the CFD software FLUENT 14.5.Finally, using this method, the influences of flow rate and hydrate volume fraction on hydrate particle size distribution, hydrate volume concentration distribution and pipeline pressure drop were simulated and analyzed.展开更多
The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile...The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.展开更多
A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and ...A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and the reverse-threaded pin on the material flow behavior were mainly discussed. Results showed that the biggest material flow velocity appeared at the outer edge of the tool shoulder. The velocity value became smaller with the increase of the distance away from the tool surface. In general, material flows downwards along the pin thread when the full-threaded pin is used. Meanwhile, both the materials of the upper and the lower plates flow towards the lap interface along the pin thread when the reverse-threaded pin is used. The numerical simulation results were investigated by experiment, in which 2A12 aluminum alloy was used as the research object. The effective sheet thickness (EST) and stir zone (SZ) width of the joint by the reverse-threaded pin were much bigger than those by the full-threaded pin. Accordingly, cross tension failure load of the joint by the reverse-threaded pin is 23% bigger than the joint by the full-threaded pin.展开更多
Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.Th...Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and flow stress behavior of the billets.The billets with the specific casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.展开更多
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573-773 K and strain rate range of 0.001-1 s^-1 on a Gleeble 1500 D thermal mechanical simulator....The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573-773 K and strain rate range of 0.001-1 s^-1 on a Gleeble 1500 D thermal mechanical simulator. The results show the flow stress of Al-Cu-Mg-Ag alloy increases with strain rate and decreases after a peak value, indicating dynamic recovery and recrystallization. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate and temperature, the flow stress equation is estimated to illustrate the relation of strain rate and stress and temperature during high temperature deformation process. The processing maps exhibit two domains as optimum fields for hot deformation at different strains, including the high strain rate domain in 623-773 K and the low strain rate domain in 573-673 K.展开更多
Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under ...Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under di erent cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the e ects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-ε turbulence model and the Zwart–Gerbe–Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The di erent cavitation states are mapped in the head-net positive suction head(H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The e ect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the e ects of cavitation on pump flow and structural behaviors.展开更多
The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental...The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook(JC) model and artificial neural network(ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient(R) and mean absolute relative error(AARE). The results indicate that the flow stress behavior of 20 Mn NiM o low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook(JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20 Mn Ni Mo low carbon alloy.展开更多
The flow behavior of already forged Ti-46.2Al-2.5V-1.0Cr-0.3Ni alloy was investigated by the isothermal compression experiments. The direction of secondary hot deformation was taken to be vertical to the former forgin...The flow behavior of already forged Ti-46.2Al-2.5V-1.0Cr-0.3Ni alloy was investigated by the isothermal compression experiments. The direction of secondary hot deformation was taken to be vertical to the former forging axis. And the deformation activation energy was calculated. Specimens have three kinds of starting microstructures, i.e. as-forged, relief annealed and duplex. The true strain—stress curves show that the duplex microstructure has the lowest flow resistance, better steady-state flow behavior compared with other two microstructures. It is found that obtaining duplex microstructure makes the work hardening rate and the strain rate sensitivity increase. The duplex microstructure alloy has the lowest value.展开更多
A series of thermal compressing tests of Mg-6Zn-0.5Zr and Mg-6Zn-0.5Zr-1Er alloys were performed on a Gleeble-1500D thermal simulator. The microstructures of thermal compressed Mg-6Zn-0.5Zr and Mg-6Zn-0.5Zr-lEr alloys...A series of thermal compressing tests of Mg-6Zn-0.5Zr and Mg-6Zn-0.5Zr-1Er alloys were performed on a Gleeble-1500D thermal simulator. The microstructures of thermal compressed Mg-6Zn-0.5Zr and Mg-6Zn-0.5Zr-lEr alloys were determined by optical microscopy, transmission electron microscopy and X-ray diffractometry. The results show that Mg-6Zn-0.5Zr alloy mainly consists of a-Mg and MgZn2 phase, while Mg-6Zn-0.5Zr-1Er alloy comprises a-Mg phase, coarse Mg3Zn4Er2 eutectic, rod-liked Mg3Zn4Er2 precipitated phase, fine I phase particle (Mg3Zn6Er, icosahedral quasicrystal structure). The peak flow stress becomes larger with increasing strain rate and erbium addition at the same temperature, and gets smaller with increasing deformation temperature at the same strain rate. The deformation activation energy increases with increasing temperature, strain rate and erbium addition. In addition, it is observed that the growth of dynamic recrystallization (DRX) grains of Mg-6Zn-0.5Zr-1Er alloy was markedly suppressed due to the pinning effect of fine I phase and Mg3Zn4Er2 phase during thermal compression.展开更多
基金supported by the National Natural Science Foundation of China (No.51901153)Shanxi Scholarship Council of China (No.2019032)+2 种基金Natural Science Foundation of Shanxi Province,China (No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China (No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China (No.2023-DXSSKF-Z02)。
文摘The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.
基金Project (14JJ6047) supported by the Natural Science Foundation of Hunan Province,ChinaProject (51274092) supported by the National Natural Science Foundation of ChinaProject (20120161110040) supported by the Doctoral Program of Higher Education ofChina
文摘Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.
基金Projects(2006BAB11B07,2007BAB15B01)supported by the National Science&Technology Pillar Program during the Eleventh Five-year Plan Period,ChinaProject(2011BAB05B01)supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period,China
文摘To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.
文摘By electrical resistance tomography (ERT) the cross sectional profiles of gas hold-up in a φ56mm bubble column are obtained with four designs of gas sparger. The effect of sparger geometry on the bubble distribution is re-vealed by applying a sensitivity conjugated gradients reconstruction method (SCG). Experimental results show that over-all hold-up obtained by ERT is generally in good agreement with those measured with the pressure transducer and the ERT system produces informative evidence that the radial profiles of hold-up is very similar to the sparger design in the lower section of bubble column. Meanwhile, the rise velocity of bubble swarm and the Sauter mean bubble size are evaluated using ERT based on dynamic gas disengagement theory. The experimental results are in good agreement with correlations and conventional estimation obtained using pressure transmitter methods.
基金Supported by the National Natural Science Foundation of China (50706007 50976025) the National Key Program of Basic Research in China (2010CB732206)+1 种基金 the Foundation of Excellent Young Scholar of Southeast University (4003001039) the Collaboration Project of China and British (2010DFA61960)
文摘Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.
文摘The thermomechanical behavior of precipitation-hardened aluminum alloy AA7022-T6 was studied using isothermal compression at temperatures of 623−773 K and strain rates of 0.01−1 s^−1.The experimental results indicated that dynamic recrystallization(DRX)is a predominant hot deformation mechanism,especially at elevated temperatures and low strain rates.The modified Johnson−Cook(J−C)and the strain compensated Arrhenius-type models were developed to predict the hot flow behavior under different deformation conditions.The correlation coefficients of modified J−C model and the strain compensated Arrhenius-type models were 0.9914 and 0.9972,respectively,their average relative errors(ARE)were 6.074%and 4.465%,respectively,and their root mean square errors(RMSE)were 10.611 and 1.665 MPa,respectively,indicating that the strain compensated Arrhenius-type model can predict the hot flow stress of AA7022-T6 aluminum alloy with an appropriate accuracy.
文摘A proper constitutive model was developed to predict the hot tensile flow behavior of IMI834 titanium alloy in α+β region. Hot tensile tests were performed at 800–1025 °C and 0.001–0.1 s<sup>−1</sup>. The constitutive model was developed through an Arrhenius-type equation at strains of 0.08–0.22 to characterize the hot tension behavior. It was found that the activation energies for hot tensile deformation of IMI834 titanium alloy are in the range of 519–557 kJ/mol at different strain values. The accuracy of predicted flow stress curves was evaluated using standard statistical parameters. These curves are appropriately found to be in good agreement with the experimental ones.
基金Supported by the National Natural Science Foundation of China(21376116)A PAPD Project of Jiangsu Higher Education Institution
文摘The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the reasonability of simulation results.Water molecules can spontaneously infiltrate into the nanopores,but an external driving force is generally required to pass through the whole pores.The exit of nanopore has a large obstruction on the water effusion.The flow velocity within the graphene nanochannels does not display monotonous dependence upon the pore width,indicating that the flow is related to the microscopic structures of water confined in the nanopores.Extensive structures of confined water are characterized in order to understand the flow behavior.This simulation improves the understanding of graphene-based nanofluidics,which helps in developing a new type of membrane separation technique.
基金financially supported by the National Science Fund for Excellent Young Scholars(No.51722401)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-003C1)the Key Program of the National Natural Science Foundation of China(No.51734001)。
文摘Ore particles,especially fine interlayers,commonly segregate in heap stacking,leading to undesirable flow paths and changeable flow velocity fields of packed beds.Computed tomography(CT),COMSOL Multiphysics,and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers.The formation of fine interlayers was accompanied with the segregation of particles in packed beds.Fine particles reached the upper position of the packed beds during stacking.CT revealed that the average porosity of fine interlayers(24.21%)was significantly lower than that of the heap packed by coarse ores(37.42%),which directly affected the formation of flow paths.Specifically,the potential flow paths in the internal regions of fine interlayers were undeveloped.Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds.Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity(1.8×10^-5 m/s)suddenly increased.Fluid stagnant regions with a flow velocity lower than 0.2×10^-5 m/s appeared in flow paths with a large diameter.
基金Supported by Shandong Provincial Natural Science Foundation,China(ZR2017MEE057)the Fundamental Research Funds for the Central Universities(14CX02207A,17CX05006,17CX06017)the Graduate Innovation Project of China University of Petroleum(East China)(YCX2017062)
文摘Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Based on population balance equation, the frame of the dynamic model was established first, which took both hydrate agglomeration and hydrate breakage into consideration.Then, the calculating methods of four key parameters involved in the dynamic model were given according to hydrate agglomeration dynamics.The four key parameters are collision frequency, agglomeration efficiency, breakage frequency and the size distribution of sub particles resulting from particle breakage.After the whole dynamic model was built, it was combined with several traditional solid–liquid flow models and then together solved by the CFD software FLUENT 14.5.Finally, using this method, the influences of flow rate and hydrate volume fraction on hydrate particle size distribution, hydrate volume concentration distribution and pipeline pressure drop were simulated and analyzed.
基金We would like to acknowledge the Sao Paulo Research Foundation(FAPESP)(Grant No.2014/15091-7 and 2016/10997-0)the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil(CNPq)(Grant No.449009/2014-9)This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil(CAPES)-Finance Code 001.Danielle Cristina Camilo MAGALHÃES acknowledges CNPq for her PhD scholarship(Grant No.153181/2013-3).
文摘The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.
基金This work is supported by the National Natural Science Foundation of China (No. 51204111 ), the Natural Science Foundation of Liaoning Province ( No. 2013024004 and No. 2014024008).
文摘A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and the reverse-threaded pin on the material flow behavior were mainly discussed. Results showed that the biggest material flow velocity appeared at the outer edge of the tool shoulder. The velocity value became smaller with the increase of the distance away from the tool surface. In general, material flows downwards along the pin thread when the full-threaded pin is used. Meanwhile, both the materials of the upper and the lower plates flow towards the lap interface along the pin thread when the reverse-threaded pin is used. The numerical simulation results were investigated by experiment, in which 2A12 aluminum alloy was used as the research object. The effective sheet thickness (EST) and stir zone (SZ) width of the joint by the reverse-threaded pin were much bigger than those by the full-threaded pin. Accordingly, cross tension failure load of the joint by the reverse-threaded pin is 23% bigger than the joint by the full-threaded pin.
基金support from the National Natural Science Foundation of China(grant nos.51601062 and 51605159)the National Natural Science Foundation of Hunan(2018JJ3180).
基金This research was financially supported by National Basic Research Program of China(Grant No.2013CB632203)the Liaoning Provincial Natural Science Foundation of China(Grant No.201202072)+1 种基金National Key Technology R&D Program of China(2012BAF09B01)the Fundamental Research Foundation of Central Universities(Grant Nos.N120509002 and N120309003).
文摘Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and flow stress behavior of the billets.The billets with the specific casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
基金the National Basic Research Program of China(No.2005CB623705)
文摘The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573-773 K and strain rate range of 0.001-1 s^-1 on a Gleeble 1500 D thermal mechanical simulator. The results show the flow stress of Al-Cu-Mg-Ag alloy increases with strain rate and decreases after a peak value, indicating dynamic recovery and recrystallization. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate and temperature, the flow stress equation is estimated to illustrate the relation of strain rate and stress and temperature during high temperature deformation process. The processing maps exhibit two domains as optimum fields for hot deformation at different strains, including the high strain rate domain in 623-773 K and the low strain rate domain in 573-673 K.
基金Supported by National Natural Science Foundation of China(Grant Nos.51609212,51606167)China Postdoctoral Science Foundation(Grant No.2016M590546)Zhejiang Provincial Natural Science Foundation(Grant No.2016C31043)
文摘Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under di erent cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the e ects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-ε turbulence model and the Zwart–Gerbe–Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The di erent cavitation states are mapped in the head-net positive suction head(H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The e ect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the e ects of cavitation on pump flow and structural behaviors.
基金Project(CDJZR14130006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook(JC) model and artificial neural network(ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient(R) and mean absolute relative error(AARE). The results indicate that the flow stress behavior of 20 Mn NiM o low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook(JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20 Mn Ni Mo low carbon alloy.
基金Project(2002AA305209) supported by the High Tech Research and Development Program of China
文摘The flow behavior of already forged Ti-46.2Al-2.5V-1.0Cr-0.3Ni alloy was investigated by the isothermal compression experiments. The direction of secondary hot deformation was taken to be vertical to the former forging axis. And the deformation activation energy was calculated. Specimens have three kinds of starting microstructures, i.e. as-forged, relief annealed and duplex. The true strain—stress curves show that the duplex microstructure has the lowest flow resistance, better steady-state flow behavior compared with other two microstructures. It is found that obtaining duplex microstructure makes the work hardening rate and the strain rate sensitivity increase. The duplex microstructure alloy has the lowest value.
基金Project(2003AA331110) supported by the High-Tech Research and Development Program of China
文摘A series of thermal compressing tests of Mg-6Zn-0.5Zr and Mg-6Zn-0.5Zr-1Er alloys were performed on a Gleeble-1500D thermal simulator. The microstructures of thermal compressed Mg-6Zn-0.5Zr and Mg-6Zn-0.5Zr-lEr alloys were determined by optical microscopy, transmission electron microscopy and X-ray diffractometry. The results show that Mg-6Zn-0.5Zr alloy mainly consists of a-Mg and MgZn2 phase, while Mg-6Zn-0.5Zr-1Er alloy comprises a-Mg phase, coarse Mg3Zn4Er2 eutectic, rod-liked Mg3Zn4Er2 precipitated phase, fine I phase particle (Mg3Zn6Er, icosahedral quasicrystal structure). The peak flow stress becomes larger with increasing strain rate and erbium addition at the same temperature, and gets smaller with increasing deformation temperature at the same strain rate. The deformation activation energy increases with increasing temperature, strain rate and erbium addition. In addition, it is observed that the growth of dynamic recrystallization (DRX) grains of Mg-6Zn-0.5Zr-1Er alloy was markedly suppressed due to the pinning effect of fine I phase and Mg3Zn4Er2 phase during thermal compression.