The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dim...The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.展开更多
The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,whi...The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.展开更多
During transportation of salt aqueous solutions with centrifugal pump, crystallization phenomenon is frequently encountered. For this kind of two-phase flow, it is difficult to be accurately modeled since there are va...During transportation of salt aqueous solutions with centrifugal pump, crystallization phenomenon is frequently encountered. For this kind of two-phase flow, it is difficult to be accurately modeled since there are various medium properties and phase change characteristics. In view of experiment, several problems are hampering the implementation of precise measurement. Influences of blade outlet angle and medium temperature on crystallization rate were studied. Sodium sulfate solution was applied to simulate practical fluid in chemical industry. Particle image velocimetry(PIV) was employed to measure velocity distributions in rotating impeller. Crystallization processes in three impellers with different blade outlet angles were investigated. Relations among crystallization and flow parameters such as temperature and velocity were obtained. With the same blade wrap angle, when blade outlet angle is larger, diffusion of single flow passage gets stronger, relative velocity at blade outlet decreases and large scale vortex tends to appear near the blade working surface. For the impact of volume effect of particle phase on fluid viscosity, both liquid and solid phase velocities decrease with continual forming and growing of crystal particles. Velocity of solid phase is greater than that of liquid phase and its direction leans more closely to blade working surface. Solid particles tend to move towards blade working surface, as is more obvious in the impeller with large blade outlet angle. Therefore, collision between solid particles with stem part of blade working surface is more intensive in impeller with large blade outlet angle. Concerning transportation of salt aqueous solution, accurate PIV measurement is conducted in centrifugal impellers with different blade outlet angles. The results are useful and instructive in relevant engineering design and operation.展开更多
The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separa...The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separation process in the cyclone tube is calculated by using two-fluid model based on the Eulerian-Eulerian method.The results show that the structure with the internal outlet angle smaller than the external one is more beneficial to the separation performance. It is found that the small internal angle can help increase the swirl number,while the small external angle can help increase the friction coefficient. Several groups of numerical simulations are conducted for the air intake unit of the gas turbine in practice. When the internal outlet angle is 35° and the external outlet angle is 40°,the blade has sufficient cyclone strength and the separation rate of particles with diameters of 10—100 μm is between70%—98%. The small blade angle is more conducive to the separation of fine particles,leading to violent collision of large particles on the outer wall and reduction of separation efficiency. In addition,reducing the external angle is conducive to the discharge of large particles.展开更多
As an important parameter of compressor impeller, the design value of blade outlet backsweep angle has a great influence on the performance of impeller. In this paper, six impellers with blade outlet backsweep angle ...As an important parameter of compressor impeller, the design value of blade outlet backsweep angle has a great influence on the performance of impeller. In this paper, six impellers with blade outlet backsweep angle β<sub>2B</sub> equal to 0°, 10°, 20°, 30°, 40°, and 50° were designed to evaluate the influences of impeller backsweep angle β<sub>2B</sub> on the performance, characteristics of gas flow and equivalent stress using computational fluid dynamics (CFD) and finite element analysis (FEA). Results indicated that the performance curve for the outlet backsweep blade angle β<sub>2B</sub> of 50° has the largest stable operating range. The isentropic efficiency of the impeller with backsweep angle β<sub>2B</sub> equal to 40° is 16.8% - 25.9% higher than that of the impeller with backsweep angle β<sub>2B</sub> equal to 0°. When the blade outlet backsweep angle is 30°, the equivalent stress distribution of the impeller is more uniform, the maximum equivalent stress is the smallest.展开更多
Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the ...Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the impeller inlet.Four variations of lean angles,that is,8°,10°,15° and 20°,were made at first stage impeller.Reynolds Average Navier Stokes equation was used in simulation together with a shear?stress transport(SST) k-w turbulence model and mixing-plane approach,respectively.Three dimensional fluid flows were simplified using periodic model to reduce the computational cost and time required.A good performance was expected that the secondary flow can be effectively reduced in the flow passage of the impeller without excessive increase in manufacturing cost caused by the secondary flow.The results show that secondary flow affects the main flow intricately to form vortices or having non-uniform velocity in the flow passage,which in turn results in substantial fluid energy loss not only in the impeller but also in the guide vane downstream of impeller.The numerical solutions were performed and allowed the optimum design and operating conditions to be obtained.展开更多
Mini turbo-pumps having a diameter smaller than 100mm are employed in many fields;automobile radiator pump,ventricular assist pump,cooling pump for electric devices,washing machine pump and so on.Further,the needs for...Mini turbo-pumps having a diameter smaller than 100mm are employed in many fields;automobile radiator pump,ventricular assist pump,cooling pump for electric devices,washing machine pump and so on.Further,the needs for mini turbo-pumps would become larger with the increase of the application of it for electrical machines.It is desirable that the mini turbo-pump design is as simple as possible due to restriction to make precise manufactures.But the design method for the mini turbo-pump is not established because the internal flow condition for these small-sized fluid machineries is not clarified and conventional theory is not conductive for small-sized pumps.Three types of rotors with different outlet angles are prepared for an experiment and a numerical analysis.The performance tests are conducted with these rotors in order to investigate the effect of the blade outlet angle on performance and internal flow condition of mini turbo-pumps.It is clarified from the experimental results that head of the mini turbo-pump increases and maximum efficiency flow rate shifts to larger flow rate according to the increase of the blade outlet angle,however the maximum efficiency decreases with the increase of it.In the present paper,the performance of the mini turbo-pump is shown and the internal flow conditions are clarified with the results of the experiment and the numerical flow analysis.Furthermore,the effects of the blade outlet angle on the performance are investigated and high performance design with simple structure for the mini turbo-pump would be considered.展开更多
The high-load compressor plays an important role in further improving the performance of aero-engine.However,the complex shock waves in the cascade channel also bring more aerodynamic losses.This paper proposes a supe...The high-load compressor plays an important role in further improving the performance of aero-engine.However,the complex shock waves in the cascade channel also bring more aerodynamic losses.This paper proposes a supersonic compressor cascade modeling method based on the theory of unique inlet flow angle,and the aerodynamic design and optimization of a cascade with inlet Mach number 1.85 are studied by combining the numerical optimization method and planar cascade experiment.The results show that pressure increase can be achieved by multiple shock waves which are obtained by the reflection of the leading edge detached shock wave in the initial supersonic cascade channel at the design point,which verifies the feasibility of the design method.After optimization,the aerodynamic performance of the cascade has been improved to different degrees at the design point and off-design point.When the static pressure ratio is 3.285,the total pressure recovery coefficient reaches 86.82%at the design point,which is on the advanced level of the same type of cascade.The experimental results of planar cascade schlieren and surface pressure measurement also verify the correctness of the simulation method,which provides useful references for the subsequent compressor design.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Higher Education Institutions ofChina(No.12KJD570001)
文摘The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.
基金supported by Fundamental Research Funds for the Central UniversitiesChina(Grant No.xjj20100073)Science and Technology Innovation Project of Shaanxi Province of China(Grant No.2011KTCL01-04)
文摘The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.
基金supported by National Natural Science Foundation of China (Grant No. 50476068, Grant No. 50776040)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060299008)
文摘During transportation of salt aqueous solutions with centrifugal pump, crystallization phenomenon is frequently encountered. For this kind of two-phase flow, it is difficult to be accurately modeled since there are various medium properties and phase change characteristics. In view of experiment, several problems are hampering the implementation of precise measurement. Influences of blade outlet angle and medium temperature on crystallization rate were studied. Sodium sulfate solution was applied to simulate practical fluid in chemical industry. Particle image velocimetry(PIV) was employed to measure velocity distributions in rotating impeller. Crystallization processes in three impellers with different blade outlet angles were investigated. Relations among crystallization and flow parameters such as temperature and velocity were obtained. With the same blade wrap angle, when blade outlet angle is larger, diffusion of single flow passage gets stronger, relative velocity at blade outlet decreases and large scale vortex tends to appear near the blade working surface. For the impact of volume effect of particle phase on fluid viscosity, both liquid and solid phase velocities decrease with continual forming and growing of crystal particles. Velocity of solid phase is greater than that of liquid phase and its direction leans more closely to blade working surface. Solid particles tend to move towards blade working surface, as is more obvious in the impeller with large blade outlet angle. Therefore, collision between solid particles with stem part of blade working surface is more intensive in impeller with large blade outlet angle. Concerning transportation of salt aqueous solution, accurate PIV measurement is conducted in centrifugal impellers with different blade outlet angles. The results are useful and instructive in relevant engineering design and operation.
文摘The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separation process in the cyclone tube is calculated by using two-fluid model based on the Eulerian-Eulerian method.The results show that the structure with the internal outlet angle smaller than the external one is more beneficial to the separation performance. It is found that the small internal angle can help increase the swirl number,while the small external angle can help increase the friction coefficient. Several groups of numerical simulations are conducted for the air intake unit of the gas turbine in practice. When the internal outlet angle is 35° and the external outlet angle is 40°,the blade has sufficient cyclone strength and the separation rate of particles with diameters of 10—100 μm is between70%—98%. The small blade angle is more conducive to the separation of fine particles,leading to violent collision of large particles on the outer wall and reduction of separation efficiency. In addition,reducing the external angle is conducive to the discharge of large particles.
文摘As an important parameter of compressor impeller, the design value of blade outlet backsweep angle has a great influence on the performance of impeller. In this paper, six impellers with blade outlet backsweep angle β<sub>2B</sub> equal to 0°, 10°, 20°, 30°, 40°, and 50° were designed to evaluate the influences of impeller backsweep angle β<sub>2B</sub> on the performance, characteristics of gas flow and equivalent stress using computational fluid dynamics (CFD) and finite element analysis (FEA). Results indicated that the performance curve for the outlet backsweep blade angle β<sub>2B</sub> of 50° has the largest stable operating range. The isentropic efficiency of the impeller with backsweep angle β<sub>2B</sub> equal to 40° is 16.8% - 25.9% higher than that of the impeller with backsweep angle β<sub>2B</sub> equal to 0°. When the blade outlet backsweep angle is 30°, the equivalent stress distribution of the impeller is more uniform, the maximum equivalent stress is the smallest.
基金Project(NRF-2010-013-D00007) supported by the National Research Foundation of KoreaWork finacially supported by the 2010 Research Professor Fund of Gyeongsang National University,Korea
文摘Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the impeller inlet.Four variations of lean angles,that is,8°,10°,15° and 20°,were made at first stage impeller.Reynolds Average Navier Stokes equation was used in simulation together with a shear?stress transport(SST) k-w turbulence model and mixing-plane approach,respectively.Three dimensional fluid flows were simplified using periodic model to reduce the computational cost and time required.A good performance was expected that the secondary flow can be effectively reduced in the flow passage of the impeller without excessive increase in manufacturing cost caused by the secondary flow.The results show that secondary flow affects the main flow intricately to form vortices or having non-uniform velocity in the flow passage,which in turn results in substantial fluid energy loss not only in the impeller but also in the guide vane downstream of impeller.The numerical solutions were performed and allowed the optimum design and operating conditions to be obtained.
文摘Mini turbo-pumps having a diameter smaller than 100mm are employed in many fields;automobile radiator pump,ventricular assist pump,cooling pump for electric devices,washing machine pump and so on.Further,the needs for mini turbo-pumps would become larger with the increase of the application of it for electrical machines.It is desirable that the mini turbo-pump design is as simple as possible due to restriction to make precise manufactures.But the design method for the mini turbo-pump is not established because the internal flow condition for these small-sized fluid machineries is not clarified and conventional theory is not conductive for small-sized pumps.Three types of rotors with different outlet angles are prepared for an experiment and a numerical analysis.The performance tests are conducted with these rotors in order to investigate the effect of the blade outlet angle on performance and internal flow condition of mini turbo-pumps.It is clarified from the experimental results that head of the mini turbo-pump increases and maximum efficiency flow rate shifts to larger flow rate according to the increase of the blade outlet angle,however the maximum efficiency decreases with the increase of it.In the present paper,the performance of the mini turbo-pump is shown and the internal flow conditions are clarified with the results of the experiment and the numerical flow analysis.Furthermore,the effects of the blade outlet angle on the performance are investigated and high performance design with simple structure for the mini turbo-pump would be considered.
基金funded by the National Science and Technology Major Project(J2019-II-0016-0037).
文摘The high-load compressor plays an important role in further improving the performance of aero-engine.However,the complex shock waves in the cascade channel also bring more aerodynamic losses.This paper proposes a supersonic compressor cascade modeling method based on the theory of unique inlet flow angle,and the aerodynamic design and optimization of a cascade with inlet Mach number 1.85 are studied by combining the numerical optimization method and planar cascade experiment.The results show that pressure increase can be achieved by multiple shock waves which are obtained by the reflection of the leading edge detached shock wave in the initial supersonic cascade channel at the design point,which verifies the feasibility of the design method.After optimization,the aerodynamic performance of the cascade has been improved to different degrees at the design point and off-design point.When the static pressure ratio is 3.285,the total pressure recovery coefficient reaches 86.82%at the design point,which is on the advanced level of the same type of cascade.The experimental results of planar cascade schlieren and surface pressure measurement also verify the correctness of the simulation method,which provides useful references for the subsequent compressor design.