Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to inves...Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases.Firstly,the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows.Then,forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T^*and combined ratio r.The combined flow cases are classified into three categories to investigate the effect of r on cylinder’s dynamic response,and the effect of T*is described under long and short period cases.Finally,fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T^*.The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.展开更多
The evolution of wake structures and variation of the forces on a flat plate in harmonic oscillatory and in-line combined flows are obtained numerically by improved discrete vortex method. For the oscillatory oncoming...The evolution of wake structures and variation of the forces on a flat plate in harmonic oscillatory and in-line combined flows are obtained numerically by improved discrete vortex method. For the oscillatory oncoming flow cases, when K_c number varies from 2 to 40, the vortex pattern changes from a 'harmonic wave' shaped (in a range of small K_c numbers) to a slight inclined 'harmonic wave' shaped (in a range of moderate K_c numbers), then to inclined vortex clusters with an angle of 50 ° to the oncoming flow direction (at K_c = 20), at last, as K_c number becomes large, the vortex pattern is like a normal Karman vortex street. The well predicted drag and inertia force coefficients are obtained, which are more close to the results of Keulegan & Carpenter's experiment as compared with previous vortex simulation by other au- thors. The existence of minimum point of inertia force coefficient C_m near K_c = 20 is also well predicted and this phenomenon can be interpreted according to the vortex structure. For steady-oscillatory in-line combined flow cases, the vortex modes behave like a vortex street, exhibit a 'longitudinal wave' structure, and a vor- tex cluster shape corresponding to the ratios of U_m to U_0 which are of O (10^(-1)), O(1)and O (10), respectively. The effect on the prediction of forces on the flat plate from the disturbance component in a combined flow has been demon- strated qualitatively. In addition to this, the lock-in phenomenon of vortex shedding has been checked.展开更多
Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed ...Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed features of the wake flow are calculated and discussed. Then, in harmonic oscillatory oncoming flow two different wake flow patterns with K_c=2,4 and 10 are obtained respectively. Our results present a new wake flow pattern for low K_c numbers (K_c<5) describing vortex shedding, pairing and moving in a period of the oscillatory flow starting from rest. The calculated drag and inertia force coefficients are closer to experimental data from the U-tube than the previous results of vortex simulation. For in-line combined oncoming flow the vortex lock-in and dynamic characteristics are simulated. The results are shown to be in good agreement with experiments.展开更多
A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventil...A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventilation. The optimal parameters such as overlap ratio and pitch ratio are determined through cascade experiment. Experiment results also show a big promotion of maximum lift coefficient C1,max and stall attack angle a1,max compared to the existing bi-directional symmetry airfoils.展开更多
In this paper a novel design method of aerodynamic configuration is proposed to integrate forebody,strut and inlet for strutjet engine,and a model at design point of Mach number6 is generated to investigate the aerody...In this paper a novel design method of aerodynamic configuration is proposed to integrate forebody,strut and inlet for strutjet engine,and a model at design point of Mach number6 is generated to investigate the aerodynamic performance by both simulations and experiments.The basic flow field employed by proposed method is a combined flow named IBB,which is combined by Internal Conical Flow A(ICFA),truncated Busemann flow I(BI)for external section,and truncated Busemann flow II(BII)for internal section.The model configuration is generated by streamline tracing method from basic flow field,in which the forebody section is traced from ICFA and BI flows,and the inlet as well as strut section is traced from BII flow.The simulations in Mach number 4,5,and 6 demonstrate uniform starting flow fields with relatively high total pressure recovery,which agree well with experiments in wind tunnel.Additionally,in low Mach number cases,this inlet could start at Mach number 3 while it is unstarted at Mach number 2.7;in high Mach number cases,a uniform flow could still exist in Mach number 6.5 while a relatively strong shock wave boundary layer interaction is found in cowl area of Mach number 7 case,indicating the inlet designed by proposed method works in a relatively wide Mach number range.展开更多
This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suc...This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.展开更多
Vibrational power flow on combined plates with a change in mass and stiffness or with viscoelastic damping layer used widely in engineering is studied. The expressions of flexural displacement and other physical quan...Vibrational power flow on combined plates with a change in mass and stiffness or with viscoelastic damping layer used widely in engineering is studied. The expressions of flexural displacement and other physical quantities are obtained using Laplace transformation and transfer matrix approach, then influences of changes in mass and stiffness of discontinuous material and the free damping layer on the input power flow and the transmitted power flow are discussed. The conclusions provide theory basis for structural optimization design and reducing noise and vibration展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51909163 and 51979166)。
文摘Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases.Firstly,the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows.Then,forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T^*and combined ratio r.The combined flow cases are classified into three categories to investigate the effect of r on cylinder’s dynamic response,and the effect of T*is described under long and short period cases.Finally,fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T^*.The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.
基金The project supported by National Natural Science Foundation of China & LNM, Institute of Mechanics, CAS
文摘The evolution of wake structures and variation of the forces on a flat plate in harmonic oscillatory and in-line combined flows are obtained numerically by improved discrete vortex method. For the oscillatory oncoming flow cases, when K_c number varies from 2 to 40, the vortex pattern changes from a 'harmonic wave' shaped (in a range of small K_c numbers) to a slight inclined 'harmonic wave' shaped (in a range of moderate K_c numbers), then to inclined vortex clusters with an angle of 50 ° to the oncoming flow direction (at K_c = 20), at last, as K_c number becomes large, the vortex pattern is like a normal Karman vortex street. The well predicted drag and inertia force coefficients are obtained, which are more close to the results of Keulegan & Carpenter's experiment as compared with previous vortex simulation by other au- thors. The existence of minimum point of inertia force coefficient C_m near K_c = 20 is also well predicted and this phenomenon can be interpreted according to the vortex structure. For steady-oscillatory in-line combined flow cases, the vortex modes behave like a vortex street, exhibit a 'longitudinal wave' structure, and a vor- tex cluster shape corresponding to the ratios of U_m to U_0 which are of O (10^(-1)), O(1)and O (10), respectively. The effect on the prediction of forces on the flat plate from the disturbance component in a combined flow has been demon- strated qualitatively. In addition to this, the lock-in phenomenon of vortex shedding has been checked.
基金The project supported by National Natural Science Fundation of China and LNM of Institute of Mechanics. CAS .
文摘Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed features of the wake flow are calculated and discussed. Then, in harmonic oscillatory oncoming flow two different wake flow patterns with K_c=2,4 and 10 are obtained respectively. Our results present a new wake flow pattern for low K_c numbers (K_c<5) describing vortex shedding, pairing and moving in a period of the oscillatory flow starting from rest. The calculated drag and inertia force coefficients are closer to experimental data from the U-tube than the previous results of vortex simulation. For in-line combined oncoming flow the vortex lock-in and dynamic characteristics are simulated. The results are shown to be in good agreement with experiments.
文摘A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventilation. The optimal parameters such as overlap ratio and pitch ratio are determined through cascade experiment. Experiment results also show a big promotion of maximum lift coefficient C1,max and stall attack angle a1,max compared to the existing bi-directional symmetry airfoils.
基金supported by the National Natural Science Foundation of China(Nos.12072157,51776096)China Postdoctoral Science Foundation(Nos.2019TQ0147,2020M671472)。
文摘In this paper a novel design method of aerodynamic configuration is proposed to integrate forebody,strut and inlet for strutjet engine,and a model at design point of Mach number6 is generated to investigate the aerodynamic performance by both simulations and experiments.The basic flow field employed by proposed method is a combined flow named IBB,which is combined by Internal Conical Flow A(ICFA),truncated Busemann flow I(BI)for external section,and truncated Busemann flow II(BII)for internal section.The model configuration is generated by streamline tracing method from basic flow field,in which the forebody section is traced from ICFA and BI flows,and the inlet as well as strut section is traced from BII flow.The simulations in Mach number 4,5,and 6 demonstrate uniform starting flow fields with relatively high total pressure recovery,which agree well with experiments in wind tunnel.Additionally,in low Mach number cases,this inlet could start at Mach number 3 while it is unstarted at Mach number 2.7;in high Mach number cases,a uniform flow could still exist in Mach number 6.5 while a relatively strong shock wave boundary layer interaction is found in cowl area of Mach number 7 case,indicating the inlet designed by proposed method works in a relatively wide Mach number range.
文摘This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.
文摘Vibrational power flow on combined plates with a change in mass and stiffness or with viscoelastic damping layer used widely in engineering is studied. The expressions of flexural displacement and other physical quantities are obtained using Laplace transformation and transfer matrix approach, then influences of changes in mass and stiffness of discontinuous material and the free damping layer on the input power flow and the transmitted power flow are discussed. The conclusions provide theory basis for structural optimization design and reducing noise and vibration