期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enrichment factors of movable hydrocarbons in lacustrine shale oil and exploration potential of shale oil in Gulong Sag,Songliao Basin,NE China 被引量:3
1
作者 ZHAO Wenzhi BIAN Congsheng +9 位作者 LI Yongxin ZHANG Jinyou HE Kun LIU Wei ZHANG Bin LEI Zhengdong LIU Chang ZHANG Jingya GUAN Ming LIU Shijul 《Petroleum Exploration and Development》 SCIE 2023年第3期520-533,共14页
The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditi... The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China. 展开更多
关键词 Gulong Sag continental shale oil movable hydrocarbon enrichment factor enrichment zone/interval evaluation material basis component flow engineering-associated factor
下载PDF
“Component flow”conditions and its effects on enhancing production of continental medium-to-high maturity shale oil
2
作者 ZHAO Wenzhi BIAN Congsheng +8 位作者 LI Yongxin LIU Wei QIN Bing PU Xiugang JIANG Jianlin LIU Shiju GUAN Ming DONG Jin SHEN Yutan 《Petroleum Exploration and Development》 SCIE 2024年第4期826-838,共13页
Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiment... Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil. 展开更多
关键词 continental facies pure shale type shale oil medium-to-high maturity shale oil micro-nanopores multi-component hydrocarbons component flow similarity and intermiscibility molecular aggregate
下载PDF
About One Discrete Mathematical Model of Perfect Fluid
3
作者 Konstantin Eduardovich Plokhotnikov 《Open Journal of Modelling and Simulation》 2016年第3期129-167,共40页
In work, it is constructed a discrete mathematical model of motion of a perfect fluid. The fluid is represented as an ensemble of identical so-called liquid particles, which are in the form of extended geometrical obj... In work, it is constructed a discrete mathematical model of motion of a perfect fluid. The fluid is represented as an ensemble of identical so-called liquid particles, which are in the form of extended geometrical objects: circles and spheres for two-dimensional and three-dimensional cases, respectively. The mechanism of interaction between the liquid particles on a binary level and on the level of the n-cluster is formulated. This mechanism has previously been found by the author as part of the mathematical modeling of turbulent fluid motion. In the turbulence model was derived and investigated the potential interaction of pairs of liquid particles, which contained a singularity of the branch point. Exactly, this is possible to build in this article discrete stochastic-deterministic model of an ideal fluid. The results of computational experiment to simulate various kinds of flows in two-dimensional and three-dimensional ensembles of liquid particles are presented. Modeling was carried out in the areas of quadratic or cubic form. On boundary of a region satisfies the condition of elastic reflection liquid particles. The flows with spontaneous separation of particles in a region, various kinds of eddy streams, with the quite unexpected statistical properties of an ensemble of particles characteristic for the Fermi-Pasta-Ulam effect were found. We build and study the flow in which the velocity of the particles is calibrated. It was possible using the appropriate flows of liquid particles of the ensemble to demonstrate the possibility to reproduce any prescribed image by manipulating the parameters of the interaction. Calculations of the flows were performed with using MATLAB software package according to the algorithms presented in this article. 展开更多
关键词 Perfect Fluid Discrete Model Liquid Particle Branch Point TURBULENCE Interaction in the Cluster The Laws of Conservation Stochastic and Deterministic components of the flow Computational Experiment The Separation of Particles The Effect of the Fermi-Pasta-Ulam Calibration of Particle Velocities
下载PDF
Sub-leading flow modes in PbPb collisions at (~sNN)^(1/2) = 2.76 TeV from the HYDJET++ model
4
作者 P.Cirkovic D.Devetak +2 位作者 M.Dordevic J.Milosevic M.Stojanovic 《Chinese Physics C》 SCIE CAS CSCD 2017年第7期42-51,共10页
Recent LHC results on the appearance of sub-leading flow modes in Pb Pb collisions at 2.76 TeV, related to initial-state fluctuations, are analyzed and interpreted within the HYDJET++ model. Using the newly introduc... Recent LHC results on the appearance of sub-leading flow modes in Pb Pb collisions at 2.76 TeV, related to initial-state fluctuations, are analyzed and interpreted within the HYDJET++ model. Using the newly introduced Principal Component Analysis(PCA) method applied to two-particle azimuthal correlations extracted from the model calculations, the leading and sub-leading flow modes are studied as a function of the transverse momentum(p T) over a wide centrality range. The leading modes of the elliptic(v2^(1)) and triangular(v3^(1)) flow calculated with the HYDJET++ model reproduce rather well the v2 {2} and v3 {2} coefficients measured experimentally using the two-particle correlations. Within the p T 3 Ge V/c range, where hydrodynamics dominates, the sub-leading flow effects are greatest at the highest p T of around 3 Ge V/c. The sub-leading elliptic flow mode(v2^(2)), which corresponds to the n = 2 harmonic, has a small non-zero value and slowly increases from central to peripheral collisions, while the sub-leading triangular flow mode(v3^(2)), which corresponds to the n = 3 harmonic, is even smaller and does not depend on centrality. For n= 2, the relative magnitude of the effect measured with respect to the leading flow mode shows a shallow minimum for semi-central collisions and increases for very central and for peripheral collisions. For the n= 3 case, there is no centrality dependence. The sub-leading flow mode results obtained from the HYDJET++model are in rather good agreement with the experimental measurements of the CMS Collaboration. 展开更多
关键词 hydrodynamics flow initial-state fluctuations principal component analysis HYDJET++
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部