Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure m...Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure mechanism still remains unclear. In this work, based on laboratory tests, numerical simulations with the particle flow code(PFC) were carried out to reproduce the micro-fracturing process of granite specimens. Shear and tensile cracks were both recorded to investigate the failure mode of rocks under different loading conditions. At the same time, a dynamic damage model based on the Weibull distribution was established to predict the deformation and degradation behavior of specimens. It is found that micro-cracks play important roles in controlling the dynamic deformation and failure process of rock under impact loadings. The sharp increase in the number of cracks may be the reason for the strength increase of rock under high strain rates. Tensile cracks tend to be the key reason for splitting failure of specimens. Numerical simulation of crack propagation by PFC can give vivid description of the failure process. However, it is not enough for evaluation of material degradation. The dynamic damage model is able to predict the stress-strain relationship of specimens reasonably well, and can be used to explain the degradation of specimens under impact loadings at macro-scale. Crack and damage can describe material degradation at different scales and can be used together to reveal the failure mechanism of rocks.展开更多
The study has analyzed the relationship between the water-drainage sluice process of reservoir, stress triggers and shadows of earthquake and porosity variability of fault slip zone. First, the pore pressure, pressure...The study has analyzed the relationship between the water-drainage sluice process of reservoir, stress triggers and shadows of earthquake and porosity variability of fault slip zone. First, the pore pressure, pressure gradient, viscous stress and Reynolds stress to reservoir-earthquake fault slip problem are analyzed, and these are un-negligible factors of the extended coulomb failure stress under ultra-high temperature and pressure condition. Second, the porosity tensor and permeability tensor are studied, the relationship between Zipingpu reservoir and Longmenshan slip has been analyzed, and the extended viscous stress and Reynolds stress as function of time and infiltration process are obtained. Last, some primary conclusions about the flow-solid coupled facture mechanism to the Zipingpu reservoir and Longmenshan slip problem are presented, which can help understand the flow-solid coupled facture mechanism of reservoir-coseismic fault slip problem.展开更多
Gas–solid flow in a fluid catalytic cracking (FCC) riser exhibits poor mixing in the form of a core–annulus flow pattern and a dense bottom/dilute top distribution of solids. To enhance gas–solid mixing, studies ...Gas–solid flow in a fluid catalytic cracking (FCC) riser exhibits poor mixing in the form of a core–annulus flow pattern and a dense bottom/dilute top distribution of solids. To enhance gas–solid mixing, studies on dense fluidized beds have suggested using a pulsating flow of gas. The present study investigates the effect of pulsating flow on gas–solid hydrodynamics inside the FCC riser employing computational fluid dynamics. Two flow conditions are investigated: a cold flow of air-FCC catalyst in a pilot-scale riser and a reactive flow in an industrial-scale FCC riser. In the cold-flow riser, pulsating flows cause the slug flow of solids and thus increase the average solid accumulation in the flow domain and solid segregation towards the wall. In the industrial FCC riser, pulsating flows produce radial profiles that are more homogeneous. Pulsating flows further improve the conversion and yield in the initial few metres of height. At 7 m, the conversion from pulsating flow is 59%, compared with 44% in without pulsating flow. The results and analysis presented here will help optimize flow conditions in the circulating fluidized bed riser, in not only FCC but also applications such as fast pyrolysis and combustion.展开更多
To investigate the gas-solid flow pattern of a combustor-style fluid catalytic cracking regenerator, a laboratory-scale regenerator was designed. In scaling down from an actual regenerator, large-diameter hydrodynamic...To investigate the gas-solid flow pattern of a combustor-style fluid catalytic cracking regenerator, a laboratory-scale regenerator was designed. In scaling down from an actual regenerator, large-diameter hydrodynamic effects were taken into consideration. These considerations are the novelties of the present study. Applying the Eulerian-Eulerian approach, a three-dimensional computational fluid dynamics (CFD) model of the regenerator was developed. Using this model, various aspects of the hydrodynamic behavior that are potentially effective in catalyst regeneration were investigated. The CFD simulation results show that at various sections the gas-solid flow patterns exhibit different behavior because of the asymmetric location of the catalyst inlets and the lift outlets. The ratio of the recirculated catalyst to spent catalyst determines the quality of the spent and recirculated catalyst mixing and distribution because the location and quality of vortices change in the lower part of the combustor. The simulation results show that recirculated catalyst considerably reduces the air bypass that disperses the catalyst particles widely over the cross section. Decreasing the velocity of superficial air produces a complex flow pattern whereas the variation in catalyst mass flux does not alter the flow pattern significantly as the flow is dilute.展开更多
A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid...A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid phase and solid phase. To study the seepage behavior of the fluid phase, all the fractures in solid are identified by a block cutting algorithm and form a flow network. Then the hydraulic heads at crack ends are solved. To study the deformation and destruction of solid phase, the 2-order NMM and sub-region boundary element method are combined to solve the stress-strain field. Crack growth is controlled by the well-accepted criterion, including the tension criterion or Mohr-Coulomb criterion for the initialization of cracks and the maximum circumferential stress theory for crack propagation. Once the crack growth occurs, the seepage and deformation analysis will be resolved in the next simulation step. Such weak coupling analysis will continue until the structure becomes stable or is destructed. Five examples are used to verify the new method. The results demonstrate that the method can solve the SIFs at crack tip and fluid flow in crack network precisely, and the method is effective in simulating the hydraulic facture problem. Besides, the NMM shows great convenience and is of high accuracy in simulating the crack growth problem.展开更多
基金Projects(51274254,51322403)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0528)supported by theProgram for New Century Excellent Talents in University,ChinaProject(2013SK2011)supported by Hunan Province Science andTechnology Plan,China
文摘Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure mechanism still remains unclear. In this work, based on laboratory tests, numerical simulations with the particle flow code(PFC) were carried out to reproduce the micro-fracturing process of granite specimens. Shear and tensile cracks were both recorded to investigate the failure mode of rocks under different loading conditions. At the same time, a dynamic damage model based on the Weibull distribution was established to predict the deformation and degradation behavior of specimens. It is found that micro-cracks play important roles in controlling the dynamic deformation and failure process of rock under impact loadings. The sharp increase in the number of cracks may be the reason for the strength increase of rock under high strain rates. Tensile cracks tend to be the key reason for splitting failure of specimens. Numerical simulation of crack propagation by PFC can give vivid description of the failure process. However, it is not enough for evaluation of material degradation. The dynamic damage model is able to predict the stress-strain relationship of specimens reasonably well, and can be used to explain the degradation of specimens under impact loadings at macro-scale. Crack and damage can describe material degradation at different scales and can be used together to reveal the failure mechanism of rocks.
基金supported by Project SinoProbe-07 of Chinathe National Natural Science Foundation of China (Grant No. D0408/4097409)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N42)the Key Important Project of the National Natural Science Foundation of China (Grant No. 10734070)
文摘The study has analyzed the relationship between the water-drainage sluice process of reservoir, stress triggers and shadows of earthquake and porosity variability of fault slip zone. First, the pore pressure, pressure gradient, viscous stress and Reynolds stress to reservoir-earthquake fault slip problem are analyzed, and these are un-negligible factors of the extended coulomb failure stress under ultra-high temperature and pressure condition. Second, the porosity tensor and permeability tensor are studied, the relationship between Zipingpu reservoir and Longmenshan slip has been analyzed, and the extended viscous stress and Reynolds stress as function of time and infiltration process are obtained. Last, some primary conclusions about the flow-solid coupled facture mechanism to the Zipingpu reservoir and Longmenshan slip problem are presented, which can help understand the flow-solid coupled facture mechanism of reservoir-coseismic fault slip problem.
文摘Gas–solid flow in a fluid catalytic cracking (FCC) riser exhibits poor mixing in the form of a core–annulus flow pattern and a dense bottom/dilute top distribution of solids. To enhance gas–solid mixing, studies on dense fluidized beds have suggested using a pulsating flow of gas. The present study investigates the effect of pulsating flow on gas–solid hydrodynamics inside the FCC riser employing computational fluid dynamics. Two flow conditions are investigated: a cold flow of air-FCC catalyst in a pilot-scale riser and a reactive flow in an industrial-scale FCC riser. In the cold-flow riser, pulsating flows cause the slug flow of solids and thus increase the average solid accumulation in the flow domain and solid segregation towards the wall. In the industrial FCC riser, pulsating flows produce radial profiles that are more homogeneous. Pulsating flows further improve the conversion and yield in the initial few metres of height. At 7 m, the conversion from pulsating flow is 59%, compared with 44% in without pulsating flow. The results and analysis presented here will help optimize flow conditions in the circulating fluidized bed riser, in not only FCC but also applications such as fast pyrolysis and combustion.
文摘To investigate the gas-solid flow pattern of a combustor-style fluid catalytic cracking regenerator, a laboratory-scale regenerator was designed. In scaling down from an actual regenerator, large-diameter hydrodynamic effects were taken into consideration. These considerations are the novelties of the present study. Applying the Eulerian-Eulerian approach, a three-dimensional computational fluid dynamics (CFD) model of the regenerator was developed. Using this model, various aspects of the hydrodynamic behavior that are potentially effective in catalyst regeneration were investigated. The CFD simulation results show that at various sections the gas-solid flow patterns exhibit different behavior because of the asymmetric location of the catalyst inlets and the lift outlets. The ratio of the recirculated catalyst to spent catalyst determines the quality of the spent and recirculated catalyst mixing and distribution because the location and quality of vortices change in the lower part of the combustor. The simulation results show that recirculated catalyst considerably reduces the air bypass that disperses the catalyst particles widely over the cross section. Decreasing the velocity of superficial air produces a complex flow pattern whereas the variation in catalyst mass flux does not alter the flow pattern significantly as the flow is dilute.
基金supported by the National Natural Science Foundation of China(Grant Nos.51439005&51209235)the National Basic Research Program of China("973"Project)(Grant Nos.2013CB035904,2013CB-036406)
文摘A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid phase and solid phase. To study the seepage behavior of the fluid phase, all the fractures in solid are identified by a block cutting algorithm and form a flow network. Then the hydraulic heads at crack ends are solved. To study the deformation and destruction of solid phase, the 2-order NMM and sub-region boundary element method are combined to solve the stress-strain field. Crack growth is controlled by the well-accepted criterion, including the tension criterion or Mohr-Coulomb criterion for the initialization of cracks and the maximum circumferential stress theory for crack propagation. Once the crack growth occurs, the seepage and deformation analysis will be resolved in the next simulation step. Such weak coupling analysis will continue until the structure becomes stable or is destructed. Five examples are used to verify the new method. The results demonstrate that the method can solve the SIFs at crack tip and fluid flow in crack network precisely, and the method is effective in simulating the hydraulic facture problem. Besides, the NMM shows great convenience and is of high accuracy in simulating the crack growth problem.