期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
NUMERICAL MODELING OF TURBULENTEVAPORATING GAS-DROPLET TWO-PHASE FLOWS IN AN AFTERBURNER DIFFUSOR OF TURBO-FAN JET ENGINES
1
作者 Zhou Lixing and Zhang JianTsinghua University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第4期258-265,共8页
The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of pre... The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows pretty good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbo-fan jet engines. 展开更多
关键词 NUMERICAL MODELING OF TURBULENTEVAPORATING GAS-DROPLET TWO-PHASE flowS IN AN AFTERBURNER DIFFUSOR OF TURBO-FAN JET engineS JET GAS
下载PDF
Computer-added design of the flow part geometry of the centripetal turbine of combined internal combustion engine
2
作者 V.A.Lashko A.V.Passar 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第S1期45-47,共3页
关键词 Computer-added design of the flow part geometry of the centripetal turbine of combined internal combustion engine
下载PDF
CFD技术在船舶与海洋工程复杂粘性流动中的应用进展 被引量:3
3
作者 王建华 万德成 《Journal of Marine Science and Application》 CSCD 2020年第1期1-16,共16页
Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting... Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering. 展开更多
关键词 Complex ship and ocean engineering flows Free-surface flows Overset grid method Fluid–structure interaction naoe-FOAM-SJTU solver
下载PDF
A novel multi-fidelity coupled simulation method for flow systems 被引量:1
4
作者 Wang Peng Zheng Yun +2 位作者 Zou Zhengping Qi Lei Zhou Zhixiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期868-875,共8页
For the numerical simulation of flow systems with various complex components, the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute a... For the numerical simulation of flow systems with various complex components, the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute advantage in the detailed flow capturing. The proper coupling of the advantages of different dimensional methods can strike balance well between time cost and accuracy and then significantly decrease the whole design cycle for the flow systems in modern machines. A novel multi-fidelity coupled simulation method with numerical zooming is developed for flow systems. This method focuses on the integration of one-, two-and three-dimensional codes for various components. Coupled iterative process for the different dimensional simulation cycles of sub-systems is performed until the concerned flow variables of the whole system achieve convergence. Numerical zooming is employed to update boundary data of components with different dimen-sionalities. Based on this method, a highly automatic, multi-discipline computing environment with integrated zooming is developed. The numerical results of Y-Junction and the air system of a jet engine are presented to verify the solution method. They indicate that this type of multi-fidelity simulationmethod can greatly improve the prediction capability for the flow systems. 展开更多
关键词 Complex flow system Coupling Jet engine Multi-fidelity Zooming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部