期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Flow Field Analysis of Submerged Horizontal Plate Type Breakwater 被引量:2
1
作者 张志强 栾茂田 王科 《China Ocean Engineering》 SCIE EI CSCD 2013年第6期821-828,共8页
Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity fiel... Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination. 展开更多
关键词 boundary element method plate type breakwater flow field analysis
下载PDF
Analysis of the Flow Field and Impact Force in High-Pressure Water Descaling
2
作者 Yue Cui Liyuan Wang +2 位作者 Jian Wu Haisheng Liu Di Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第1期165-177,共13页
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by... This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications. 展开更多
关键词 High pressure water descaling flow field analysis FSI target distance strike range
下载PDF
NUMERICAL ANALYSIS ON THREE-DIMENSIONAL FLOW FIELD OF TURBINE IN TORQUE CONVERTER 被引量:11
3
作者 LIU Yue PAN Yuxue LIU Chunbao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期94-96,共3页
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on ... Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data. 展开更多
关键词 Torque converter Turbine flow field Numerical analysis
下载PDF
Influence of slug flow on flow fields in a gas–liquid cylindrical cyclone separator:A simulation study 被引量:3
4
作者 Xiaoming Luo Jing Ren +3 位作者 Tong Chen YibinWang Yuling Lü Limin He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2075-2083,共9页
A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liqui... A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liquid cylindrical cyclone(GLCC)separator while varying the expanding diameter ratio and angle of inclination.The dissipation of liquid slug in inlet pipe is analyzed under different expanding diameter ratios and inclination angles.In the inlet pipe,it is found that increasing expanding diameter ratio and inclination angle can reduce the liquid slug stability and enhancing the effect of gravity,which is beneficial to slug flow dissipation.In the cylinder,increasing the expanding diameter ratio can significantly reduce the liquid carrying depth of the gas phase but result in a slightly increase of the gas content in the liquid phase space.Moreover,increasing the inclination angle results in a decrease in the carrying depth of liquid in the vapor phase,but enhances gas–liquid mixing and increases the gas-carrying depth in the liquid phase.Taking into consideration the dual effects of slug dissipation in the inlet pipe and carrying capacity of gas/liquid spaces in the cylinder,the optimal expanding diameter ratio and inclination angle values can be determined. 展开更多
关键词 GLCC Slug simulation flow pattern Liquid slug dissipation Cyclonic flow field analysis
下载PDF
Water Hydraulic 2/2 Directional Valve with Plane Piston Structure 被引量:1
5
作者 GONG Yongjun YANG Huayong WANG Zuwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期109-115,共7页
Due to the fire resistance and environmental compatibility, using water as the working fluid in hydraulic circuits is receiving an increasing attention by both manufactures and users. This hydraulic directional valve ... Due to the fire resistance and environmental compatibility, using water as the working fluid in hydraulic circuits is receiving an increasing attention by both manufactures and users. This hydraulic directional valve is developed. When new water hydraulic directional valve is designed and manufactured, this paper introduces a water hydraulic 2/2 directional valve and its principle. The valve is composed of a hydraulically operated seat valve and a magnetic 3/2 direction valve. Aimed at the serious leakage and impact generating easily in reversing suddenly, an improved structure of water space seal is changed to direct seal, compaction force between main valve spool and main valve pocket was logically designed and damper in pilot valve port is matched with sensitive cavity in main valve. From the view of flow control, the methods of cavitation resistanee of the directional water hydraulic valve are investigated. The computational fluid dynamics approaches are applied to obtain static pressure distributions and cavitation images in the channel of the main stage of the valve with two kinds of structure. The results show that the method of optimized spout can effectively restrain cavitation. The work provides some useful reference for developing water hydraulic control valve with the lower noise and lower vibration. Meantime, the structural parameters are optimized on the basis of information obtained from simulation. Static test, dynamic test and life test are accomplished, and the results show that the water hydraulic directional valve possesses good property, its pressure loss is 1.1 MPa lower, switching time is shorter than 0.025 s, and its strike crest is 0.8 MPa lower. The valve possess fine dynamic performance with the characteristic rapidly action and lower implusion. 展开更多
关键词 water hydraulic directional valve structure optimization flow field analysis
下载PDF
An internal cooling grinding wheel:From design to application 被引量:1
6
作者 Xiangwu XIAO Yufeng JIN +3 位作者 Meiliang CHEN Ruitao PENG Heng TANG Jiangxiong GAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期465-482,共18页
The cooling and lubrication conditions during the grinding process significantly impact the nickel-based superalloy’s final service performance.The existing jet cooling and heat pipe technology can solve the heat con... The cooling and lubrication conditions during the grinding process significantly impact the nickel-based superalloy’s final service performance.The existing jet cooling and heat pipe technology can solve the heat conduction problem in the grinding process of superalloy.Still,managing cooling,lubrication,and chip removal are difficult.This paper describes the design and fabrication of a novel central fluid-through internal cooling slotted grinding wheel with an ordered grain pattern to improve the grinding machinability of a nickel-based superalloy.The pressurized grinding fluid was ejected into the grinding zone via the pipe and tool holder from the lower-end face of the inner cooling wheel.The structure of the grinding wheel was optimized using computational fluid dynamics(CFD).The flow field in the grinding area achieved the highest overall flow rate,distribution homogeneity,and effective exit flow when the internal flow channel had four throughholes.The exit for the inner runner is located at the abrasive edge and diamond staggered pattern.Single-layer brazing was used to create cubic boron nitride(CBN)abrasive rings with various abrasive patterns.The internal cooling wheel matrix and various components were prepared according to the optimized grinding wheel geometry model.A grinding test bench was built to conduct an experimental study of grinding the nickel-based alloy GH4169.The results show that,under the same conditions,a diamond-shaped staggered pattern obtains lower grinding temperature,lower surface roughness,better surface morphology,and more significant residual compressive stress distribution than an abrasive cluster diagonal circular staggered pattern or disordered pattern.The average effective flow rate calculated by CFD is increased by 42.3%when compared to the disordered pattern.In the experiment,compared to the disordered arrangement,with the increase of grinding wheel’s rotating speed and coolant pressure,the average grinding temperature of abrasive grain with diamond-interleaved arrangement decreases by 58.2%and 51.7%respectively,and its surface hardening degree decreases by 11.1%and 11.7%respectively. 展开更多
关键词 flow field analysis Grinding experiment Internal cooling grinding wheel Ordered pattern Surface hardening
原文传递
Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method
7
作者 Fan Yuxin Xia Jian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1373-1383,共11页
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a t... A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature. 展开更多
关键词 flow fields analysis Fluid–structure interaction Nonlinear structural dynam-ics Numerical analysis Parachute inflation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部