Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of c...This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed.展开更多
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting...Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.展开更多
Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the...Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.展开更多
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud...Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.展开更多
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive...Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.展开更多
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow d...Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.展开更多
Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and re...Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and release travel information to travelers, to provide optimal path options to ensure that the transport system operates efficiently and safely, we have to monitor the changing of the state of road traffic and to accurately evaluate the state of the traffic, then to predict the future state of traffic. This paper represents the construction of the road traffic flow simulation including the logical structure and the physical structure, and introduces the system functions of forecasting system in Beijing.展开更多
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu...In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.展开更多
Based on four kinds of methods—numerical weather prediction model, cloud image of stationary meteorological satellite, echo image of meteorological radar and telemetric rain gauge, multi space-time scale precipitatio...Based on four kinds of methods—numerical weather prediction model, cloud image of stationary meteorological satellite, echo image of meteorological radar and telemetric rain gauge, multi space-time scale precipitation prediction products have been achieved, and multi-layer project of debris flow forecast is established with different space-time scale to get different forecast precision. The forecast system has the advantages in combination of regions and ravines, rational compounding of time and space scale. The project, which has debris flow forecast models of Sichuan province, Liangshan district and single ravine, can forecast debris flow in 3 layers and meets the demand of hazard mitigation in corresponding layer.展开更多
A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pres...A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features.展开更多
The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the ...The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the complexity and variability of real traffic systems. To improve the accuracy of short-term traffic flow forecasting, this paper presents a novel hybrid prediction framework based on Support Vector Regression (SVR) that uses a Random Forest (RF) to select the most informative feature subset and an enhanced Genetic Algorithm (GA) with chaotic characteristics to identify the optimal forecasting model parameters. The framework is evaluated with real-world traffic data collected from eight sensors located near the 1-605 interstate highway in California. Results show that the proposed RF- CGASVR model achieves better performance than other methods.展开更多
Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutiv...Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.展开更多
The increasing share of renewable energy in the electricity grid and progressing changes in power consumption have led to fluctuating,and weather-dependent power flows.To ensure grid stability,grid operators rely on p...The increasing share of renewable energy in the electricity grid and progressing changes in power consumption have led to fluctuating,and weather-dependent power flows.To ensure grid stability,grid operators rely on power forecasts which are crucial for grid calculations and planning.In this paper,a Multi-Task Learning approach is combined with a Graph Neural Network(GNN)to predict vertical power flows at transformers connecting high and extra-high voltage levels.The proposed method accounts for local differences in power flow characteristics by using an Embedding Multi-Task Learning approach.The use of a Bayesian embedding to capture the latent node characteristics allows to share the weights across all transformers in the subsequent node-invariant GNN while still allowing the individual behavioral patterns of the transformers to be distinguished.At the same time,dependencies between transformers are considered by the GNN architecture which can learn relationships between different transformers and thus take into account that power flows in an electricity network are not independent from each other.The effectiveness of the proposed method is demonstrated through evaluation on two real-world data sets provided by two of four German Transmission System Operators,comprising large portions of the operated German transmission grid.The results show that the proposed Multi-Task Graph Neural Network is a suitable representation learner for electricity networks with a clear advantage provided by the preceding embedding layer.It is able to capture interconnections between correlated transformers and indeed improves the performance in power flow prediction compared to standard Neural Networks.A sign test shows that the proposed model reduces the test RMSE on both data sets compared to the benchmark models significantly.展开更多
Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed s...Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed scale because most of existing researches on the initiation mechanism of debris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib- uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti- mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study watershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied.展开更多
This paper proposes a wireless network traffic prediction model based on long-term and short-term memory cyclic neural networks.Through simulation experiments,the throughput prediction of 5G wireless networks using di...This paper proposes a wireless network traffic prediction model based on long-term and short-term memory cyclic neural networks.Through simulation experiments,the throughput prediction of 5G wireless networks using different scheduling algorithms for many different types of services is studied.The results verify that the long short-term memory prediction model has acceptable prediction accuracy and algorithm training speed,meets the needs of wireless network traffic prediction,and has a good application prospect.展开更多
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.
文摘This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed.
文摘Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.
文摘Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.
基金funded by the National Key R&D Program of China(Grant No.2023YFE0106800)the Humanity and Social Science Youth Foundation of Ministry of Education of China(Grant No.22YJC630109).
文摘Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.
基金National Natural Science Foundation of China(No.51467008)
文摘Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
基金supported by the National Natural Science Foundation of China (Grant Nos.71901134&51878165)the National Science Foundation for Distinguished Young Scholars (Grant No.51925801).
文摘Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.
基金Key Projects in Science & Technology Pillar Program in 2007 in Beijing (No.D07020601400705)
文摘Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and release travel information to travelers, to provide optimal path options to ensure that the transport system operates efficiently and safely, we have to monitor the changing of the state of road traffic and to accurately evaluate the state of the traffic, then to predict the future state of traffic. This paper represents the construction of the road traffic flow simulation including the logical structure and the physical structure, and introduces the system functions of forecasting system in Beijing.
基金National Natural Science Foundation of China(No.61663021)Science and Technology Support Project of Gansu Province(No.1304GKCA023)Scientific Research Project in University of Gansu Province(No.2017A-025)
文摘In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.
文摘Based on four kinds of methods—numerical weather prediction model, cloud image of stationary meteorological satellite, echo image of meteorological radar and telemetric rain gauge, multi space-time scale precipitation prediction products have been achieved, and multi-layer project of debris flow forecast is established with different space-time scale to get different forecast precision. The forecast system has the advantages in combination of regions and ravines, rational compounding of time and space scale. The project, which has debris flow forecast models of Sichuan province, Liangshan district and single ravine, can forecast debris flow in 3 layers and meets the demand of hazard mitigation in corresponding layer.
基金the Major Projects of the National Social Science Fund in China(21&ZD127).
文摘A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features.
基金supported by the Science and Technology Department of Sichuan Province of China (Nos. 2017JY0007, 2016JY0073, and 2016JZ0031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministrythe Fundamental Research Funds for the Central Universities (No. ZYGX2015J063)
文摘The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the complexity and variability of real traffic systems. To improve the accuracy of short-term traffic flow forecasting, this paper presents a novel hybrid prediction framework based on Support Vector Regression (SVR) that uses a Random Forest (RF) to select the most informative feature subset and an enhanced Genetic Algorithm (GA) with chaotic characteristics to identify the optimal forecasting model parameters. The framework is evaluated with real-world traffic data collected from eight sensors located near the 1-605 interstate highway in California. Results show that the proposed RF- CGASVR model achieves better performance than other methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.72171236 and 71701216)the National Key R&D Program of China(Grant No.2020YFB1600400)+2 种基金the China Scholarship Council(202008360277)the Key Science and Technology Research Program of the Educational Department of Jiangxi Province(Grant No.GJJ200605)the Natural Science Foundation of Hunan Province(Grant No.2020JJ5783).
文摘Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.
文摘The increasing share of renewable energy in the electricity grid and progressing changes in power consumption have led to fluctuating,and weather-dependent power flows.To ensure grid stability,grid operators rely on power forecasts which are crucial for grid calculations and planning.In this paper,a Multi-Task Learning approach is combined with a Graph Neural Network(GNN)to predict vertical power flows at transformers connecting high and extra-high voltage levels.The proposed method accounts for local differences in power flow characteristics by using an Embedding Multi-Task Learning approach.The use of a Bayesian embedding to capture the latent node characteristics allows to share the weights across all transformers in the subsequent node-invariant GNN while still allowing the individual behavioral patterns of the transformers to be distinguished.At the same time,dependencies between transformers are considered by the GNN architecture which can learn relationships between different transformers and thus take into account that power flows in an electricity network are not independent from each other.The effectiveness of the proposed method is demonstrated through evaluation on two real-world data sets provided by two of four German Transmission System Operators,comprising large portions of the operated German transmission grid.The results show that the proposed Multi-Task Graph Neural Network is a suitable representation learner for electricity networks with a clear advantage provided by the preceding embedding layer.It is able to capture interconnections between correlated transformers and indeed improves the performance in power flow prediction compared to standard Neural Networks.A sign test shows that the proposed model reduces the test RMSE on both data sets compared to the benchmark models significantly.
基金supported by the foundation of the Research Fund for Commonweal Trades (Meteorology) (No. GYHY201006039)
文摘Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed scale because most of existing researches on the initiation mechanism of debris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib- uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti- mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study watershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied.
文摘This paper proposes a wireless network traffic prediction model based on long-term and short-term memory cyclic neural networks.Through simulation experiments,the throughput prediction of 5G wireless networks using different scheduling algorithms for many different types of services is studied.The results verify that the long short-term memory prediction model has acceptable prediction accuracy and algorithm training speed,meets the needs of wireless network traffic prediction,and has a good application prospect.