To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
For some special flows, especially the potential flow in a plane, using the hodograph method has obvious advantages. Realistic flows have a stream surface, namely, a two-dimensional manifold, on which the velocity vec...For some special flows, especially the potential flow in a plane, using the hodograph method has obvious advantages. Realistic flows have a stream surface, namely, a two-dimensional manifold, on which the velocity vector of the flow lies on its tangent space. By introducing a stream function and a potential function, we establish the hodo- graph method for potential flows on a surface using the tensor analysis. For the derived hodograph equation, we obtain a characteristic equation and its characteristic roots, from which we can classify the type of the second-order hodograph equation. Moreover, we give some examples for special surfaces.展开更多
The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the...The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the feasibility of reproducing these velocity fields with computer models. If computer modeling were to prove successful in this context, it could become a useful prediction technique and research tool to enhance our understanding of natural river dynamics. A 3-D k-E turbulence hydrodynamic model in curvilinear coordinates is established to simulate the overhank flow. The bodyfitted coordinate is adopted in the horizontal plane, the part grid is adopted in the vertical direction, and the wall-function method is employed to simulate the bed resistance. The model is applied to the simulation of the meandering channel with straight flood plain banks, and the main velocities and secondary velocities for both the longitudinal and cross sections are presented. Comparison and analysis show that the results of simulation are fit to reflect the results of experiment. These results show the application value of the model to 3D overhank flow.展开更多
In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion ...In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion and one with annular cross section, in the presence of an applied transverse uniform magnetic field, We ob- tain analytic solutions and carry out some numerical calculations of the velocity distribution and induced magnet- ic field.展开更多
A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the high...A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the highest order derivative of the unknown function and generate the lower order derivatives through successive integra- tions. The proposed methods are easy to implement because of the simplicity of the chosen basis functions. By solving the plane Poiseuille flow (PPF), plane Couette flow (PCF), and Blasius boundary layer flow with several homogeneous boundary conditions, it is shown that these methods yield results with the same accuracy as that given by the conventional Chebyshev collocation method but with better robustness, and that ob- tained by the finite difference method but with fewer modal number.展开更多
Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe co...Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe condition that those conflicting issues are gotten a consensus between stakeholders with different knowledgebackground, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has beendeveloped to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle systembased on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theoryof human being. Its character is that MFM models define a set of mass, energy and information flow structures onmultiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representationand the means-end and part-whole hierarchical flow structure to make the represented process easy to beunderstood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system wereselected to be simulated and some analysis processes such as economics analysis, environmental analysis and energybalance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finallythe simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycleand its levelised cost analysis will be represented as feasible examples.展开更多
We examined the effect of androgens on bladder blood flow (BBF), bladder function and histological changes in castrated male rats. Male Wistar rats were classified into unoperated group (control group), groups cas...We examined the effect of androgens on bladder blood flow (BBF), bladder function and histological changes in castrated male rats. Male Wistar rats were classified into unoperated group (control group), groups castrated at the age of 8weeks (group 8wPC) and groups castrated at the age of 4weeks (group 4wPC). Each rat was used at the age of 20weeks. BBF was measured using fluorescent microspheres. Bladder cystometry was performed without anesthesia or restraint; the bladder was first irrigated with saline and then with 0.25% acetic acid (AA) solution. Maximum voiding pressure and voiding interval were measured. The bladder and lilac artery were histologically examined for differences in smooth muscle and quantity of collagen fiber to analyze the effect of castration on the smooth muscle content. No differences were noted in BBF following castration. The voiding intervals for all groups were shortened (P 〈 0.001) following AA irrigation. No significant difference was noted in the maximum voiding pressure. Histological changes were observed in bladder and lilac artery. Smooth muscle/collagen ratio at the bladder was lower in groups 8wPC and 4wPC compared to the control group (P 〈 0.01), while that at the lilac artery was decreased in group 4wPC compared to the control group (P〈 0.001). In conclusion, our findings indicate that castration does not alter BBF, but leads to histological changes in the bladder as well as its associated blood vessels.展开更多
In ihis paper.an instability problem of an unsteady oscillationo flow is studied.In particultar,the phase.function of the disturbance wave.system is soived by using the charocteristic theory of partial differential eq...In ihis paper.an instability problem of an unsteady oscillationo flow is studied.In particultar,the phase.function of the disturbance wave.system is soived by using the charocteristic theory of partial differential equation and an expansion of Orysommerfeid eigenvalue problem.instead of using the disturbance model which is given previously The.flow considered is a combination of plane Poiseuille.flow with aflow oscillating periodically and its instability is found for a special initial value of a developing wave due to continuous oscillationg source.展开更多
The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation- time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scal...The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation- time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high- order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investi- gated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This valida~ tion provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows.展开更多
Fourth-order stream-function methods are proposed for the time dependent, incom- pressible Navier-Stokes and Boussinesq equations. Wide difference stencils are used instead of compact ones and the boundary terms are h...Fourth-order stream-function methods are proposed for the time dependent, incom- pressible Navier-Stokes and Boussinesq equations. Wide difference stencils are used instead of compact ones and the boundary terms are handled by extrapolating the stream-function values inside the computational domain to grid points outside, up to fourth-order in the noslip condition. Formal error analysis is done for a simple model problem, showing that this extrapolation introduces numerical boundary layers at fifth-order in the stream-function. The fourth-order convergence in velocity of the proposed method for the full problem is shown numerically.展开更多
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
基金Project supported by the National Natural Science Foundation of China (Nos. 10971165, 10771167,and 10926080)
文摘For some special flows, especially the potential flow in a plane, using the hodograph method has obvious advantages. Realistic flows have a stream surface, namely, a two-dimensional manifold, on which the velocity vector of the flow lies on its tangent space. By introducing a stream function and a potential function, we establish the hodo- graph method for potential flows on a surface using the tensor analysis. For the derived hodograph equation, we obtain a characteristic equation and its characteristic roots, from which we can classify the type of the second-order hodograph equation. Moreover, we give some examples for special surfaces.
文摘The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the feasibility of reproducing these velocity fields with computer models. If computer modeling were to prove successful in this context, it could become a useful prediction technique and research tool to enhance our understanding of natural river dynamics. A 3-D k-E turbulence hydrodynamic model in curvilinear coordinates is established to simulate the overhank flow. The bodyfitted coordinate is adopted in the horizontal plane, the part grid is adopted in the vertical direction, and the wall-function method is employed to simulate the bed resistance. The model is applied to the simulation of the meandering channel with straight flood plain banks, and the main velocities and secondary velocities for both the longitudinal and cross sections are presented. Comparison and analysis show that the results of simulation are fit to reflect the results of experiment. These results show the application value of the model to 3D overhank flow.
文摘In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion and one with annular cross section, in the presence of an applied transverse uniform magnetic field, We ob- tain analytic solutions and carry out some numerical calculations of the velocity distribution and induced magnet- ic field.
基金supported by the National Natural Science Foundation of China(Nos.11221062,11521091,and 91752203)
文摘A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the highest order derivative of the unknown function and generate the lower order derivatives through successive integra- tions. The proposed methods are easy to implement because of the simplicity of the chosen basis functions. By solving the plane Poiseuille flow (PPF), plane Couette flow (PCF), and Blasius boundary layer flow with several homogeneous boundary conditions, it is shown that these methods yield results with the same accuracy as that given by the conventional Chebyshev collocation method but with better robustness, and that ob- tained by the finite difference method but with fewer modal number.
文摘Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe condition that those conflicting issues are gotten a consensus between stakeholders with different knowledgebackground, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has beendeveloped to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle systembased on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theoryof human being. Its character is that MFM models define a set of mass, energy and information flow structures onmultiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representationand the means-end and part-whole hierarchical flow structure to make the represented process easy to beunderstood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system wereselected to be simulated and some analysis processes such as economics analysis, environmental analysis and energybalance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finallythe simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycleand its levelised cost analysis will be represented as feasible examples.
文摘We examined the effect of androgens on bladder blood flow (BBF), bladder function and histological changes in castrated male rats. Male Wistar rats were classified into unoperated group (control group), groups castrated at the age of 8weeks (group 8wPC) and groups castrated at the age of 4weeks (group 4wPC). Each rat was used at the age of 20weeks. BBF was measured using fluorescent microspheres. Bladder cystometry was performed without anesthesia or restraint; the bladder was first irrigated with saline and then with 0.25% acetic acid (AA) solution. Maximum voiding pressure and voiding interval were measured. The bladder and lilac artery were histologically examined for differences in smooth muscle and quantity of collagen fiber to analyze the effect of castration on the smooth muscle content. No differences were noted in BBF following castration. The voiding intervals for all groups were shortened (P 〈 0.001) following AA irrigation. No significant difference was noted in the maximum voiding pressure. Histological changes were observed in bladder and lilac artery. Smooth muscle/collagen ratio at the bladder was lower in groups 8wPC and 4wPC compared to the control group (P 〈 0.01), while that at the lilac artery was decreased in group 4wPC compared to the control group (P〈 0.001). In conclusion, our findings indicate that castration does not alter BBF, but leads to histological changes in the bladder as well as its associated blood vessels.
文摘In ihis paper.an instability problem of an unsteady oscillationo flow is studied.In particultar,the phase.function of the disturbance wave.system is soived by using the charocteristic theory of partial differential equation and an expansion of Orysommerfeid eigenvalue problem.instead of using the disturbance model which is given previously The.flow considered is a combination of plane Poiseuille.flow with aflow oscillating periodically and its instability is found for a special initial value of a developing wave due to continuous oscillationg source.
基金Project supported by the Science Challenge Program(No.TZ2016001)the National Natural Science Foundation of China(Nos.11472277,11572331,11232011,and 11772337)+2 种基金the Strategic Priority Research Program,Chinese Academy of Sciences(CAS)(No.XDB22040104)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SYS002)the National Basic Research Program of China(973 Program)(No.2013CB834100)
文摘The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation- time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high- order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investi- gated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This valida~ tion provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows.
基金funding from NSF under grants DMS-0713670 and ACI-0204932funding from NSERC Canada that supported this work
文摘Fourth-order stream-function methods are proposed for the time dependent, incom- pressible Navier-Stokes and Boussinesq equations. Wide difference stencils are used instead of compact ones and the boundary terms are handled by extrapolating the stream-function values inside the computational domain to grid points outside, up to fourth-order in the noslip condition. Formal error analysis is done for a simple model problem, showing that this extrapolation introduces numerical boundary layers at fifth-order in the stream-function. The fourth-order convergence in velocity of the proposed method for the full problem is shown numerically.