The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large s...The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.展开更多
文摘The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.