An experimental mold was built to study the flow in a flow control mold under high speed continuous casting. The effect of the magnetic field on the flow was investigated using mercury. The results show that the magne...An experimental mold was built to study the flow in a flow control mold under high speed continuous casting. The effect of the magnetic field on the flow was investigated using mercury. The results show that the magnetic field can not only dampen the flow of liquid metal but also change its direction, and then redistribute the flow in the mold. When maintaining a constant distance between magnets, the fluctuation of the free surface is dampened because of the increasing magnetic flux density. The flow at the free surface is improved, and the penetration depth of the downward stream is reduced. The decrease in the dis- tance between magnets promotes the brake effect and the flow is dampened in the upper eddy.展开更多
Liquid metal flow behavior in round strands continuous casting under intermittently reversing direction electromagnetic stirring was measured by ultrasonic Doppler velocity-meter in a physical simulation system in ord...Liquid metal flow behavior in round strands continuous casting under intermittently reversing direction electromagnetic stirring was measured by ultrasonic Doppler velocity-meter in a physical simulation system in order to investigate the effects of time interval(t_i)of periodically reversed magnetic field on the spatial and temporal flow.The results show that under electromagnetic stirring with direction reserved magnetic field,there's a periodically change of the metal flow velocity and rotation direction with the periodically direction changing of the magnetic field.From both the experimental and mathematical model calculation results,it is found that when t_i is nearly equal to the time required for the metal flow speeding to the maximum velocity from still and decreases to zero again,there is a critical value of the rate of dynamic pressure,which means the wash effect of the liquid metal flow.On this point,rate of dynamic pressure was proposed to be a criterion for optimization the processing of electromagnetic stirring.展开更多
文摘An experimental mold was built to study the flow in a flow control mold under high speed continuous casting. The effect of the magnetic field on the flow was investigated using mercury. The results show that the magnetic field can not only dampen the flow of liquid metal but also change its direction, and then redistribute the flow in the mold. When maintaining a constant distance between magnets, the fluctuation of the free surface is dampened because of the increasing magnetic flux density. The flow at the free surface is improved, and the penetration depth of the downward stream is reduced. The decrease in the dis- tance between magnets promotes the brake effect and the flow is dampened in the upper eddy.
基金Item Sponsored by National Natural Science Foundation of China(No.50874133)
文摘Liquid metal flow behavior in round strands continuous casting under intermittently reversing direction electromagnetic stirring was measured by ultrasonic Doppler velocity-meter in a physical simulation system in order to investigate the effects of time interval(t_i)of periodically reversed magnetic field on the spatial and temporal flow.The results show that under electromagnetic stirring with direction reserved magnetic field,there's a periodically change of the metal flow velocity and rotation direction with the periodically direction changing of the magnetic field.From both the experimental and mathematical model calculation results,it is found that when t_i is nearly equal to the time required for the metal flow speeding to the maximum velocity from still and decreases to zero again,there is a critical value of the rate of dynamic pressure,which means the wash effect of the liquid metal flow.On this point,rate of dynamic pressure was proposed to be a criterion for optimization the processing of electromagnetic stirring.