期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
EXPERIMENTAL INVESTIGATION ON THE TURBULENT COHERENT STRUCTURES OF LAMINAR SEPARATION FLOW OVER A BACKWARD FACING STEP
1
作者 Wang Jinjun Lian Qixiang Lan Shilong(Fluid Mechanics Institute, Beijing University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第3期175-181,共7页
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher... The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20. 展开更多
关键词 backward facing steps laminar boundary layer separated flow turbulent boundary layer reattached flow
下载PDF
Conjugate Heat Transfer Predictions of Gas Turbine Hot Walls Jets Cooling: Influence of Short Hole Grid Resolutions Using Computational Fluid Dynamics*
2
作者 Abubakar M. El-Jummah Shehu A. Abdulrahman Alhaji S. Grema 《Journal of Power and Energy Engineering》 2023年第10期1-16,共16页
Short hole investigations relevant to gas turbine (GT) hot walls cooling heat transfer techniques, were carried out using computational fluid dynamics (CFD) combined with conjugate heat transfer (CHT) code. The CFD so... Short hole investigations relevant to gas turbine (GT) hot walls cooling heat transfer techniques, were carried out using computational fluid dynamics (CFD) combined with conjugate heat transfer (CHT) code. The CFD software are commercial ones: ICEM for grid modelling and ANSYS Fluent for the numerical calculation, where symmetrical application prevails. The CFD CHT predictions were undertaken for Nimonic-75 metal walls with square (152.4 mm) arrays of 10 holes, whereby the lumped heat capacitance method was applied in order to determine the surface average heat transfer coefficient (HTC), h (W/m<sup>2</sup> K) and the dimensionless Nusselt number, Nu. The major parameters considered for the short hole geometries are the pitch to diameter, X/D and length to diameter, L/D ratios and both were varied with range of D values, but X of 15.24 mm and L of 6.35 mm kept constant. Also applied, are variable mass flux, G (kg/s∙m<sup>2</sup>) and were used in predicting the flow aerodynamics in the short holes. The predictions were for classic thermal entry length into a round hole, as vena contracta, flow separation and reattachment dominates the holes, hence the development of thermal profile through the depth of the GT hot walls. Additionally, the acceleration of the flow along the wall surfaces as it approaches the holes, was a significant part of the overall heat transfer. This was shown to be independent of the hole length, even though the L/D parameter is a critical component to enhanced heat transfer. The CFD CHT predictions showed that validation of the HTC h, Nu and pressure loss, ∆P are in better agreement with measured data and within reasonable acceptance. The ∆P agreement signifies that the aerodynamics were predicted correctly, which is also the reason why the HTC expressed per wall hole approach surface area and Nu were better predicted. This illustrates how effective and efficient the wall internal heat transfer cooling is for gas turbine hot wall heat transfer using airflow jets cooling. 展开更多
关键词 Lumped Heat Capacitance Thermal Entry Length Symmetrical Application flow Separation flow reattachment
下载PDF
Numerical Simulation of Deflecting Flow in a Symmetric Enlarged Channel
3
作者 HiroyukiYOSHIKAWA MizueMUNEKATA +1 位作者 HidekiOHBA Kazuyoshi ICHINOMIYA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第4期353-359,共7页
Numerical results of three-dimensional separated flow and heat transfer in a rectangular channel with a sudden expansion are presented in this paper. Numerical simulations of Navier-Stokes and energy equations are car... Numerical results of three-dimensional separated flow and heat transfer in a rectangular channel with a sudden expansion are presented in this paper. Numerical simulations of Navier-Stokes and energy equations are carried out using the finite difference method. The results of three-dimensional calculations are compared with the two-dimensional ones, and effects of the aspect ratio of channel upon the flow are shown. The transition from symmetric to asymmetric flow appears at lower Reynolds number as increasing the aspect ratio. The details of local heat transfer characteristics in two different separated flow regions on two downstream walls are clarified. Two-dimensionality of the flow and heat transfer almost disappears for the aspect ratio considered. 展开更多
关键词 Separated and reattached flow symmetric enlarged channel deflecting flow heat transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部