期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bionic Design and Finite Element Analysis of Elbow in Ice Transportation Cooling System 被引量:4
1
作者 Dejun Miao~(1,2), Xiuhua Sui~3, Linjing Xiao~3 1. Key Laboratory of Mine Hazard Prevention and Control (Ministry of Education, China), Shandong University of Science and Technology, Qingdao 266510, P. R. China 2. School of Architecture, Tsinghua University, Beijing 100084, P. R. China 3. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第3期301-306,共6页
With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical pr... With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical problem; typically flowresistance occurs in the elbow. In the present study, according to the analysis of the surface morphology of fish scale, abiomimetic functional surface structure for the interior wall of elbow is designed. Based on the theory of liquid-solid two phaseflow, a CFD numerical simulation of ice-water mixture flowing through the elbow is carried out using finite element method.Conventional experiments of pressure drop and flow resistance for both bionic and common elbows are conducted to test theeffect of the bionic elbow on flow resistance reduction. It is found that with the increase in the ice mass fraction in the ice-watermixture, the effect of bionic elbow on resistance reduction becomes more obvious. 展开更多
关键词 bionic elbow two phase flow ice transportation flow resistance reduction pressure loss
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部