It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius fo...It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.展开更多
The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel...The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.展开更多
In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the followin...In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the following evolution equation δ^2F /δt^2 (u, t) = k(u, t)N(u, t)-▽ρ(u, t), ∨(u, t) ∈ S^1 × [0, T ) with the initial data F (u, 0) = F0(u) and δF/δt (u, 0) = f(u)N0, where k is the mean curvature and N is the unit inner normal vector of the plane curve F (u, t), f(u) and N0 are the initial velocity and the unit inner normal vector of the initial convex closed curve F0, respectively, and ▽ρ is given by ▽ρ Δ=(δ^2F /δsδt ,δF/δt) T , in which T stands for the unit tangent vector. The above problem is an initial value problem for a system of partial differential equations for F , it can be completely reduced to an initial value problem for a single partial differential equation for its support function. The latter equation is a hyperbolic Monge-Ampere equation. Based on this, we show that there exists a class of initial velocities such that the solution of the above initial value problem exists only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution convergesto a point or shocks and other propagating discontinuities are generated. Furthermore, we also consider the hyperbolic mean curvature flow with the dissipative terms and obtain the similar equations about the support functions and the curvature of the curve. In the end, we discuss the close relationship between the hyperbolic mean curvature flow and the equations for the evolving relativistic string in the Minkowski space-time R^1,1.展开更多
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been ...River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.展开更多
An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the de...An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.展开更多
Objective: Obstructive sleep apnea-hypopnea syndrome (OSA) is a disease of obstructive apnea or hypopnea caused by a repeated partial or complete collapse of the upper airway during sleep. The inspiratory part of the ...Objective: Obstructive sleep apnea-hypopnea syndrome (OSA) is a disease of obstructive apnea or hypopnea caused by a repeated partial or complete collapse of the upper airway during sleep. The inspiratory part of the flow-volume curve (F-V curve) can be used as an auxiliary means to evaluate upper airway obstruction in adults. This study is to evaluate the ability of the F-V curve to predict the OSA and explore inspiratory indicators related to airway obstruction during sleep. Methods: There were 332 patients included in this cross-sectional study, who were accompanied by snoring, daytime sleepiness and other symptoms, with suspicion of OSA. According to the nocturnal polysomnography, the subjects were distributed into mild to moderate OSA group, severe OSA group and non-OSA group. A pulmonary function test was used to collect the subjects’ spirometry and F-V curves. Results: There was no significant difference in a variety of indices derived from the F-V curve between OSA and normal subjects, including 25% inspiratory flow rate, middle inspiratory flow rate, 75% inspiratory flow rate, peak flow rate, and forced inspiratory flow rate in the first second. The pulmonary function parameters were significantly correlated with the weight, age and sex of the subjects. Conclusion: These findings suggest that the inspiratory curve of pulmonary function cannot evaluate the upper airway abnormalities in patients with obstructive apnea-hypopnea syndrome.展开更多
Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak...Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak shear stress-displacement behavior is central to various time-dependent and dynamic rock mechanic problems such as rockbursts and structural instabilities in highly stressed conditions.The complete stress-displacement surface(CSDS)model was developed to describe analytically the pre-and post-peak behavior of rock interfaces under differential loads.Original formulations of the CSDS model required extensive curve-fitting iterations which limited its practical applicability and transparent integration into engineering tools.The present work proposes modifications to the CSDS model aimed at developing a comprehensive and modern calibration protocol to describe the complete shear stressdisplacement behavior of rock interfaces under differential loads.The proposed update to the CSDS model incorporates the concept of mobilized shear strength to enhance the post-peak formulations.Barton’s concepts of joint roughness coefficient(JRC)and joint compressive strength(JCS)are incorporated to facilitate empirical estimations for peak shear stress and normal closure relations.Triaxial/uniaxial compression test and direct shear test results are used to validate the updated model and exemplify the proposed calibration method.The results illustrate that the revised model successfully predicts the post-peak and complete axial stressestrain and shear stressedisplacement curves for rock joints.展开更多
The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn ...The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn (where, K1, K2, n1 andn2; K, n1 and n2; σ0, K and n are constant). The comparison of the maximum deviations and the consideration of thevariation of the work hardening rate with true strain show that the flow curves for the austenitic steels 304L and 304LN canbe described by the model σ=Kεn1+n2 lnε at higher precision.The derivatives of the models σ=K1εn1 + exp(K2 + n2ε) and σ=Kεn1+n2lnε with respect to true strain, exhibit theextreme at low true strain. This inherent character indicates that both models are unsuitable to describe the part of the workhardening rate curve at low true strain.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stres...Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stress and time,but also it has the corresponding relations to the triaxial stress-strain curves of rock.The deformation properties of soften-strain,harden-strain and ideal plasticity presented by conventional triaxial compressive test curves under the different stress states were utilized,and the creep characteristics,the creep starting stress and the different entire creep process curves of rock were studied systematically according to creep experiment results,and the relations of the triaxial stress-strain curves to the creeping starting stress,the terminating curve,the different creep processes,and the different creep fracture properties were established.The relations presented in this paper were verified partially by the creep experiment results of five types of rock.展开更多
A series of tests of deformation-induced ferrite transformation (DIP-T) in a low carbon steel were carried out by the Gleeble-3500 hot simulation machine at a temperature range of Ae3-Ar3. The overall stress-strain ...A series of tests of deformation-induced ferrite transformation (DIP-T) in a low carbon steel were carried out by the Gleeble-3500 hot simulation machine at a temperature range of Ae3-Ar3. The overall stress-strain curves during DIFT can be divided into three typical types: "double-humped"," single-humped" and "transitional". The peaks exhibited in the curve are involved with deformation-induced transformation which happened in grains or at the grain boundaries. According to the stress-time curve and strain-time curve, strain capacity dramatically postponed the strain-induced transformation, which leads to the start of the transformation right ahead of the finish of deformation and the majority of the ferrite transformation process mainly happened after the deformation. Deformation-induced transformation is a metadynamic transformation process with dynamic nucleation.展开更多
Prediction of flow-duration-curves (FDC) is an important task for water resources planning, management and hydraulic energy production. Classification of the basins as carstic and non-carstic may be used to estimate p...Prediction of flow-duration-curves (FDC) is an important task for water resources planning, management and hydraulic energy production. Classification of the basins as carstic and non-carstic may be used to estimate parameters of the FDC with predictive tools for catchments with/without observed stream flow. There is a need for obtaining FDC for ungauged stations for efficient water resource planning. Thus, study proposes a quite new approach, called the EREFDC model, for estimating the parameters of the FDC for which the parameters of the FDC are obtained with quasi-Newton method. Estimation are made for using the bv gauged stations at first than the FDC parameters are estimated for ungauged stations based on drainage area, annual mean precipitation, mean permeability, mean slope, latitude, longitude, and elevation from the mean sea level are used. The EREFDC model consists of various type of linear- and nonlinear mathematical equations, is able to predict a wide range of the FDC parameters for gauged and ungauged basins. The method is applied to 72 unimpaired catchments studied are about for 50 years average daily measured stream flow. Results showed that the EREFDC model may be used for estimating. FDC parameters for ungauged hydrological basins in order to find FDC for ungauged stations. Results also showed that the EREFDC model performs better in carstic regions than non-carstic regions. In addition, parameters of FDC for tributaries at the basins with insufficient flow data or without flow data may be determined by using basin characteristics.展开更多
The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic inter...The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic interaction between the blade rows. The results show that, compared to the compressor with unurved rotors, the compressor under scrutiny acquires remarkable increases in efficiency with significantly reduced amplitudes of the time-dependent fluctuation. The amplitude of the pressure fluctuation around the stator leading edge decreases at both endwalls, but increases at the mid-span in the curved rotors. The pressure fluctuation near the stator leading edge, therefore, becomes more uniform in the radial direction of this compressor. Except for the leading edge area, the pressure fluctuatinn amplitude declines remarkably in the tip region of stator surface downstream of the curved rotor, but hardly changes in the middle and at the hub.展开更多
The purpose of this paper is to investigate a new type of evolution problem for closed convex plane curves which will preserves the perimeter of the curve but expands the enclosed area and the final limiting curve is ...The purpose of this paper is to investigate a new type of evolution problem for closed convex plane curves which will preserves the perimeter of the curve but expands the enclosed area and the final limiting curve is a circle in the Hausdorff metric in the plane.展开更多
The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calc...The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calculated stress-strain curve with the measured one, it can be seen that they fit each other very well. Thus, the FE model built in this work is effective. According to the above mentioned model, the distributions of stress and strain in the α and β phases were simulated. The results show that the stress gradients exist in both α and β phases, and the distributions of stress are inhomogeneous. The stress inside the phase is generally higher than that near the interface. Meanwhile, the stress in the α phase is lower than that in the β phase, whereas the strain in the α phase is higher than that in the β phase.展开更多
The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results i...The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.展开更多
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo...A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.展开更多
The reliability and reliable indexes of q ua ntitative assessment of coronary flow reserve (CFR) by using time intensity cur ve (TIC) via myocardial contrast echocardiography were investigated. The TIC var iables wer...The reliability and reliable indexes of q ua ntitative assessment of coronary flow reserve (CFR) by using time intensity cur ve (TIC) via myocardial contrast echocardiography were investigated. The TIC var iables were obtained by employing acoustic densitometry (AD) technique before an d after acetylcholine (Ach) injection in 12 dogs. Meanwhile, the correlation be tween these variables and CFR was analyzed. Among the variables derived from TIC , peak intensity (PI), area under the curve (AUC) and descending slope (DS) were increased significantly ( P <0.05) with the increase of coronary blood flow a fter Ach injection. Conversely, time to peak (TP), half time of descent (HT) , and mean transit time (MTT) were decreased remarkably ( P <0.0001). Th e P I and AUC ratios from post to pre Ach injection were strongly associated with CFR with the correlation coefficient (r) being 0.8366 and 0.8824, respectively. It is reliable by using the variables derived from TIC with myocardial contrast echocardiography to quantitatively evaluate regional myocardial CFR. The PI an d AUC ratios from post to pre Ach injection are the reliable indexes for quan titative assessment of CFR.展开更多
This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by...This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by Darcy-Forchheimer.The subsequent arrangement of partial differential equations is changed into ordinary differential framework through proper transformations.Numerical arrangements of governing frameworks are set up by NDSolve procedure.Outcomes of different sundry parameters on temperature and velocity are examined.Skin friction and heat transfer rate are also shown and inspected.展开更多
基金The research described in this paper was financially supported by Youth Science Foundation Project’Research on Failure Mechanism and Evaluation Method of Sand Control Measures for Railway Machinery in Sandy Area’(12302511)Ningxia Transportation Department Science and Technology Project(20200173)Central guide local science and technology development funds(22ZY1QA005)。
文摘It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China(Grant No.2021BS01008)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2323)the Scientific Research Funding Project for introduced high level talents of IMNU(Grant No.2020YJRC014)。
文摘The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.
基金Kong and Wang was supported in part by the NSF of China (10671124)the NCET of China (NCET-05-0390)the work of Liu was supported in part by the NSF of China
文摘In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the following evolution equation δ^2F /δt^2 (u, t) = k(u, t)N(u, t)-▽ρ(u, t), ∨(u, t) ∈ S^1 × [0, T ) with the initial data F (u, 0) = F0(u) and δF/δt (u, 0) = f(u)N0, where k is the mean curvature and N is the unit inner normal vector of the plane curve F (u, t), f(u) and N0 are the initial velocity and the unit inner normal vector of the initial convex closed curve F0, respectively, and ▽ρ is given by ▽ρ Δ=(δ^2F /δsδt ,δF/δt) T , in which T stands for the unit tangent vector. The above problem is an initial value problem for a system of partial differential equations for F , it can be completely reduced to an initial value problem for a single partial differential equation for its support function. The latter equation is a hyperbolic Monge-Ampere equation. Based on this, we show that there exists a class of initial velocities such that the solution of the above initial value problem exists only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution convergesto a point or shocks and other propagating discontinuities are generated. Furthermore, we also consider the hyperbolic mean curvature flow with the dissipative terms and obtain the similar equations about the support functions and the curvature of the curve. In the end, we discuss the close relationship between the hyperbolic mean curvature flow and the equations for the evolving relativistic string in the Minkowski space-time R^1,1.
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.
基金supported in part by the Special Fund for Basic Scientific Research Business Expenses of Central Public Welfare Scientific Research Institutes under Grant TKS20210103the Open Fund of Key Laboratory of Ocean Observation Technology,Ministry of Natural Resources of China(2021klootA06).
文摘River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.
文摘An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.
文摘Objective: Obstructive sleep apnea-hypopnea syndrome (OSA) is a disease of obstructive apnea or hypopnea caused by a repeated partial or complete collapse of the upper airway during sleep. The inspiratory part of the flow-volume curve (F-V curve) can be used as an auxiliary means to evaluate upper airway obstruction in adults. This study is to evaluate the ability of the F-V curve to predict the OSA and explore inspiratory indicators related to airway obstruction during sleep. Methods: There were 332 patients included in this cross-sectional study, who were accompanied by snoring, daytime sleepiness and other symptoms, with suspicion of OSA. According to the nocturnal polysomnography, the subjects were distributed into mild to moderate OSA group, severe OSA group and non-OSA group. A pulmonary function test was used to collect the subjects’ spirometry and F-V curves. Results: There was no significant difference in a variety of indices derived from the F-V curve between OSA and normal subjects, including 25% inspiratory flow rate, middle inspiratory flow rate, 75% inspiratory flow rate, peak flow rate, and forced inspiratory flow rate in the first second. The pulmonary function parameters were significantly correlated with the weight, age and sex of the subjects. Conclusion: These findings suggest that the inspiratory curve of pulmonary function cannot evaluate the upper airway abnormalities in patients with obstructive apnea-hypopnea syndrome.
基金The authors acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada through its Discovery Grant program(RGPIN-2022-03893)École de Technologie Supérieure(ÉTS)construction engineering research funding.
文摘Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak shear stress-displacement behavior is central to various time-dependent and dynamic rock mechanic problems such as rockbursts and structural instabilities in highly stressed conditions.The complete stress-displacement surface(CSDS)model was developed to describe analytically the pre-and post-peak behavior of rock interfaces under differential loads.Original formulations of the CSDS model required extensive curve-fitting iterations which limited its practical applicability and transparent integration into engineering tools.The present work proposes modifications to the CSDS model aimed at developing a comprehensive and modern calibration protocol to describe the complete shear stressdisplacement behavior of rock interfaces under differential loads.The proposed update to the CSDS model incorporates the concept of mobilized shear strength to enhance the post-peak formulations.Barton’s concepts of joint roughness coefficient(JRC)and joint compressive strength(JCS)are incorporated to facilitate empirical estimations for peak shear stress and normal closure relations.Triaxial/uniaxial compression test and direct shear test results are used to validate the updated model and exemplify the proposed calibration method.The results illustrate that the revised model successfully predicts the post-peak and complete axial stressestrain and shear stressedisplacement curves for rock joints.
文摘The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn (where, K1, K2, n1 andn2; K, n1 and n2; σ0, K and n are constant). The comparison of the maximum deviations and the consideration of thevariation of the work hardening rate with true strain show that the flow curves for the austenitic steels 304L and 304LN canbe described by the model σ=Kεn1+n2 lnε at higher precision.The derivatives of the models σ=K1εn1 + exp(K2 + n2ε) and σ=Kεn1+n2lnε with respect to true strain, exhibit theextreme at low true strain. This inherent character indicates that both models are unsuitable to describe the part of the workhardening rate curve at low true strain.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
基金Project(50774090) supported by the National Natural Science Foundation of China
文摘Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stress and time,but also it has the corresponding relations to the triaxial stress-strain curves of rock.The deformation properties of soften-strain,harden-strain and ideal plasticity presented by conventional triaxial compressive test curves under the different stress states were utilized,and the creep characteristics,the creep starting stress and the different entire creep process curves of rock were studied systematically according to creep experiment results,and the relations of the triaxial stress-strain curves to the creeping starting stress,the terminating curve,the different creep processes,and the different creep fracture properties were established.The relations presented in this paper were verified partially by the creep experiment results of five types of rock.
文摘A series of tests of deformation-induced ferrite transformation (DIP-T) in a low carbon steel were carried out by the Gleeble-3500 hot simulation machine at a temperature range of Ae3-Ar3. The overall stress-strain curves during DIFT can be divided into three typical types: "double-humped"," single-humped" and "transitional". The peaks exhibited in the curve are involved with deformation-induced transformation which happened in grains or at the grain boundaries. According to the stress-time curve and strain-time curve, strain capacity dramatically postponed the strain-induced transformation, which leads to the start of the transformation right ahead of the finish of deformation and the majority of the ferrite transformation process mainly happened after the deformation. Deformation-induced transformation is a metadynamic transformation process with dynamic nucleation.
文摘Prediction of flow-duration-curves (FDC) is an important task for water resources planning, management and hydraulic energy production. Classification of the basins as carstic and non-carstic may be used to estimate parameters of the FDC with predictive tools for catchments with/without observed stream flow. There is a need for obtaining FDC for ungauged stations for efficient water resource planning. Thus, study proposes a quite new approach, called the EREFDC model, for estimating the parameters of the FDC for which the parameters of the FDC are obtained with quasi-Newton method. Estimation are made for using the bv gauged stations at first than the FDC parameters are estimated for ungauged stations based on drainage area, annual mean precipitation, mean permeability, mean slope, latitude, longitude, and elevation from the mean sea level are used. The EREFDC model consists of various type of linear- and nonlinear mathematical equations, is able to predict a wide range of the FDC parameters for gauged and ungauged basins. The method is applied to 72 unimpaired catchments studied are about for 50 years average daily measured stream flow. Results showed that the EREFDC model may be used for estimating. FDC parameters for ungauged hydrological basins in order to find FDC for ungauged stations. Results also showed that the EREFDC model performs better in carstic regions than non-carstic regions. In addition, parameters of FDC for tributaries at the basins with insufficient flow data or without flow data may be determined by using basin characteristics.
基金National Natural Science Foundation of China (506460210) Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20060213007)Development Program for Outstanding Young Teachers in Harbin Institute of Technology (HITQNJS.2006.046)
文摘The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic interaction between the blade rows. The results show that, compared to the compressor with unurved rotors, the compressor under scrutiny acquires remarkable increases in efficiency with significantly reduced amplitudes of the time-dependent fluctuation. The amplitude of the pressure fluctuation around the stator leading edge decreases at both endwalls, but increases at the mid-span in the curved rotors. The pressure fluctuation near the stator leading edge, therefore, becomes more uniform in the radial direction of this compressor. Except for the leading edge area, the pressure fluctuatinn amplitude declines remarkably in the tip region of stator surface downstream of the curved rotor, but hardly changes in the middle and at the hub.
基金Supported by the NNSF of China(1 0 0 71 0 6 7) and Shanghai City Foundation of Selected Academic Re-search
文摘The purpose of this paper is to investigate a new type of evolution problem for closed convex plane curves which will preserves the perimeter of the curve but expands the enclosed area and the final limiting curve is a circle in the Hausdorff metric in the plane.
文摘The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calculated stress-strain curve with the measured one, it can be seen that they fit each other very well. Thus, the FE model built in this work is effective. According to the above mentioned model, the distributions of stress and strain in the α and β phases were simulated. The results show that the stress gradients exist in both α and β phases, and the distributions of stress are inhomogeneous. The stress inside the phase is generally higher than that near the interface. Meanwhile, the stress in the α phase is lower than that in the β phase, whereas the strain in the α phase is higher than that in the β phase.
基金Supported by the Fund of Hunan Provincial Construction Department(No.06-468-8)
文摘The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.
基金Funded by Regulation RevisingItemof China Associationfor En-gineering Construction Standardization (CECS 15 :2000)
文摘A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.
文摘The reliability and reliable indexes of q ua ntitative assessment of coronary flow reserve (CFR) by using time intensity cur ve (TIC) via myocardial contrast echocardiography were investigated. The TIC var iables were obtained by employing acoustic densitometry (AD) technique before an d after acetylcholine (Ach) injection in 12 dogs. Meanwhile, the correlation be tween these variables and CFR was analyzed. Among the variables derived from TIC , peak intensity (PI), area under the curve (AUC) and descending slope (DS) were increased significantly ( P <0.05) with the increase of coronary blood flow a fter Ach injection. Conversely, time to peak (TP), half time of descent (HT) , and mean transit time (MTT) were decreased remarkably ( P <0.0001). Th e P I and AUC ratios from post to pre Ach injection were strongly associated with CFR with the correlation coefficient (r) being 0.8366 and 0.8824, respectively. It is reliable by using the variables derived from TIC with myocardial contrast echocardiography to quantitatively evaluate regional myocardial CFR. The PI an d AUC ratios from post to pre Ach injection are the reliable indexes for quan titative assessment of CFR.
文摘This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by Darcy-Forchheimer.The subsequent arrangement of partial differential equations is changed into ordinary differential framework through proper transformations.Numerical arrangements of governing frameworks are set up by NDSolve procedure.Outcomes of different sundry parameters on temperature and velocity are examined.Skin friction and heat transfer rate are also shown and inspected.