期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of bubbly flow on bending moment acting on the shaft of a gas sparged vessel stirred by a Rushton turbine 被引量:3
1
作者 石代嗯 蔡子琦 +1 位作者 Archie Eaglesham 高正明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第3期482-489,共8页
The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equi... The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equipped with digital telemetry.An analysis of the shaft bending moment amplitude shows that the amplitude distribution of the bending moment,which indicates the elasticity nature of shaft material against bending deformation,follows the Weibull distribution.The trends of amplitude mean,standard deviation and peak deviation characteristics manifest an "S" shape versus gas flow.The "S" trend of the relative mean bending moment over gas flow rate,depending on the flow regime in gas-liquid stirred vessels,resulted from the competition among the nonuniformity of bubbly flow around the impeller,the formation of gas cavities behind the blades,and the gas direct impact on the impeller when gas is introduced.A further analysis of the bending moment power spectral density shows that the rather low frequency and speed frequency are evident.The low-frequency contribution to bending moment fluctuation peaks in the complete dispersion regime. 展开更多
关键词 Bending moment Bubbly flow Stirred vessel Fluid structure interaction Amplitude distribution
下载PDF
Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method 被引量:2
2
作者 Fan Yuxin Xia Jian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1373-1383,共11页
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a t... A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature. 展开更多
关键词 flow fields analysis Fluid–structure interaction Nonlinear structural dynam-ics Numerical analysis Parachute inflation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部