With the spread use of the computers, a new crime space and method are presented for criminals. Thus computer evidence plays a key part in criminal cases. Traditional computer evidence searches require that the comput...With the spread use of the computers, a new crime space and method are presented for criminals. Thus computer evidence plays a key part in criminal cases. Traditional computer evidence searches require that the computer specialists know what is stored in the given computer. Binary-based information flow tracking which concerns the changes of control flow is an effective way to analyze the behavior of a program. The existing systems ignore the modifications of the data flow, which may be also a malicious behavior. Thus the function recognition is introduced to improve the information flow tracking. Function recognition is a helpful technique recognizing the function body from the software binary to analyze the binary code. And that no false positive and no false negative in our experiments strongly proves that our approach is effective.展开更多
In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to ef...In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to effectively discover backdoor behaviors, such as stealing secret information and injecting evil data into system, with less false negatives. With concolic execution on predetermined path, the backdoor trigger condition can be extracted and analyzed to achieve high accuracy. BASEC has been implemented and experimented on several software backdoor samples widespread on the Internet, and over 90% of them can be detected. Compared with behavior-based and system-call-based detection methods, BASEC relies less on the historical sample collections, and is more effective in detecting software backdoors, especially those injected into software by modifying and recompiling source codes.展开更多
Information Flow Tracking(IFT)is an established formal method for proving security properties related to confidentiality,integrity,and isolation.It has seen promise in identifying security vulnerabilities resulting fr...Information Flow Tracking(IFT)is an established formal method for proving security properties related to confidentiality,integrity,and isolation.It has seen promise in identifying security vulnerabilities resulting from design flaws,timing channels,and hardware Trojans for secure hardware design.However,existing IFT methods tend to take a qualitative approach and only enforce binary security properties,requiring strict non-interference for the properties to hold while real systems usually allow a small amount of information flows to enable desirable interactions.Consequently,existing methods are inadequate for reasoning about quantitative security properties or measuring the security of a design in order to assess the severity of a security vulnerability.In this work,we propose two multi-flow solutions—multiple verifications for replicating existing IFT model and multi-flow IFT method.The proposed multi-flow IFT method provides more insight into simultaneous information flow behaviors and allows for proof of quantitative information flow security properties,such as diffusion,randomization,and boundaries on the amount of simultaneous information flows.Experimental results show that our method can be used to prove a new type of information flow security property with verification performance benefits.展开更多
Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement ...Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.展开更多
The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importa...The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.展开更多
Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have on...Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have only been used with the level set technique to track the interface. In this paper, we combine the MCFM and the RGFM respectively with front tracking method, for which the fluid interfaces are explicitly tracked by connected points. The method is tested with some one-dimensional problems, and its applicability is also studied. Furthermore, in order to capture the interface more accurately, especially for strong shock impacting on interface, a shock monitor is proposed to determine the initial states of the Riemann problem. The present method is applied to various one- dimensional problems involving strong shock-interface interaction. An extension of the present method to two dimension is also introduced and preliminary results are given.展开更多
We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eu...We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.展开更多
In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The la...In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.展开更多
基金This work is supported by National Natural Science Foundation of China (Grant No.60773093, 60873209, and 60970107), the Key Program for Basic Research of Shanghai (Grant No. 09JC1407900, 09510701600, 10511500100), IBM SUR Funding and IBM Research-China JP Funding, and Key Lab of Information Network Security, Ministry of Public Security.
文摘With the spread use of the computers, a new crime space and method are presented for criminals. Thus computer evidence plays a key part in criminal cases. Traditional computer evidence searches require that the computer specialists know what is stored in the given computer. Binary-based information flow tracking which concerns the changes of control flow is an effective way to analyze the behavior of a program. The existing systems ignore the modifications of the data flow, which may be also a malicious behavior. Thus the function recognition is introduced to improve the information flow tracking. Function recognition is a helpful technique recognizing the function body from the software binary to analyze the binary code. And that no false positive and no false negative in our experiments strongly proves that our approach is effective.
基金Supported in part by the National Natural Science Foundation of China(61272493)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20113402120026)Oversea Academic Training Funds of University of Science and Technology of China
文摘In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to effectively discover backdoor behaviors, such as stealing secret information and injecting evil data into system, with less false negatives. With concolic execution on predetermined path, the backdoor trigger condition can be extracted and analyzed to achieve high accuracy. BASEC has been implemented and experimented on several software backdoor samples widespread on the Internet, and over 90% of them can be detected. Compared with behavior-based and system-call-based detection methods, BASEC relies less on the historical sample collections, and is more effective in detecting software backdoors, especially those injected into software by modifying and recompiling source codes.
基金supported in part by the National Natural Science Foundation of China(No.61672433)the Natural Science Foundation of Shaanxi Province(No.2019JM-244)。
文摘Information Flow Tracking(IFT)is an established formal method for proving security properties related to confidentiality,integrity,and isolation.It has seen promise in identifying security vulnerabilities resulting from design flaws,timing channels,and hardware Trojans for secure hardware design.However,existing IFT methods tend to take a qualitative approach and only enforce binary security properties,requiring strict non-interference for the properties to hold while real systems usually allow a small amount of information flows to enable desirable interactions.Consequently,existing methods are inadequate for reasoning about quantitative security properties or measuring the security of a design in order to assess the severity of a security vulnerability.In this work,we propose two multi-flow solutions—multiple verifications for replicating existing IFT model and multi-flow IFT method.The proposed multi-flow IFT method provides more insight into simultaneous information flow behaviors and allows for proof of quantitative information flow security properties,such as diffusion,randomization,and boundaries on the amount of simultaneous information flows.Experimental results show that our method can be used to prove a new type of information flow security property with verification performance benefits.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572201 and 91634202)
文摘Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.
基金supported by the National Natural Science Foundation of China (Grant Nos.40872097 and 41272161)the Major National Science & Technology Program (Grant Nos.2011ZX05006-005 and 2011ZX05006-006)partly funded by the State Key Laboratory for Petroleum Resource and Prospecting (Grant No.KYJJ2012-01-12)
文摘The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.
基金supported by National Science Foundation of China (10576015)
文摘Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have only been used with the level set technique to track the interface. In this paper, we combine the MCFM and the RGFM respectively with front tracking method, for which the fluid interfaces are explicitly tracked by connected points. The method is tested with some one-dimensional problems, and its applicability is also studied. Furthermore, in order to capture the interface more accurately, especially for strong shock impacting on interface, a shock monitor is proposed to determine the initial states of the Riemann problem. The present method is applied to various one- dimensional problems involving strong shock-interface interaction. An extension of the present method to two dimension is also introduced and preliminary results are given.
基金supported by the National Natural Science Foundation of China(Grant No.11572062)the Fundamental Research Funds for the Central Universities,China(Grant No.CDJZR13248801)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13043)Key Laboratory of Functional Crystals and Laser Technology,TIPCChinese Academy of Sciences
文摘We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872222 and 50921063)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110191110037)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CDJXS11240011 and CDJXS10241103)
文摘In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.