在高速低密度风洞喷管流动中,振动温度出现冻结,与平动温度和转动温度产生了严重的非平衡现象。相关数值模拟结果中,振动温度完全冻结,而试验结果明显低于计算结果。为合理解释此现象,对数值模拟方法在低温条件下的应用进行分析,基于直...在高速低密度风洞喷管流动中,振动温度出现冻结,与平动温度和转动温度产生了严重的非平衡现象。相关数值模拟结果中,振动温度完全冻结,而试验结果明显低于计算结果。为合理解释此现象,对数值模拟方法在低温条件下的应用进行分析,基于直接模拟蒙特卡罗(direct simulation Monte Carlo,DSMC)方法中热力学非平衡模拟技术,对振动松弛碰撞数进行修正,给出了修正系数1×10^(-7),建立了低温振动非平衡流动数值模拟方法。利用该方法对低密度风洞M16喷管流场和10 N姿控发动机羽流流场开展数值模拟,得到了与试验结果相符合的振动温度。研究表明:在低温条件下,由于振动松弛碰撞数很大,气体分子很难发生振动松弛碰撞,振动能不能向平动能转化,振动温度完全冻结;通过修正,降低振动松弛碰撞数,增加振动松弛碰撞的概率,可以降低振动冻结温度,使得数值模拟结果与试验结果吻合。展开更多
文摘在高速低密度风洞喷管流动中,振动温度出现冻结,与平动温度和转动温度产生了严重的非平衡现象。相关数值模拟结果中,振动温度完全冻结,而试验结果明显低于计算结果。为合理解释此现象,对数值模拟方法在低温条件下的应用进行分析,基于直接模拟蒙特卡罗(direct simulation Monte Carlo,DSMC)方法中热力学非平衡模拟技术,对振动松弛碰撞数进行修正,给出了修正系数1×10^(-7),建立了低温振动非平衡流动数值模拟方法。利用该方法对低密度风洞M16喷管流场和10 N姿控发动机羽流流场开展数值模拟,得到了与试验结果相符合的振动温度。研究表明:在低温条件下,由于振动松弛碰撞数很大,气体分子很难发生振动松弛碰撞,振动能不能向平动能转化,振动温度完全冻结;通过修正,降低振动松弛碰撞数,增加振动松弛碰撞的概率,可以降低振动冻结温度,使得数值模拟结果与试验结果吻合。