The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the Nor...The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for w...A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.展开更多
A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall ...Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall current and constant heat flux. It is considered that the porous plate is subjected to constant heat flux. The obtained non-dimensional, non-similar coupled non-linear and partial differential equations have been solved by explicit finite difference technique. Numerical solutions for velocities, temperature and concentration distributions are obtained for various parameters by the above mentioned technique. The local and average shear stresses, Nusselt number as well as Sherwood number are also investigated. The stability conditions and convergence criteria of the explicit finite difference scheme are established for finding the restriction of the values of various parameters to get more accuracy. The obtained results are illustrated with the help of graphs to observe the effects of various legitimate parameters.展开更多
This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)g...This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).展开更多
Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation ...Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation of twoline/multi-lineDC current flow controllers (CFCs), a small-signalmodel of the DC CFCs integrated M2TDC grids is derived,studying the impact of the power losses of the DC CFC andtheir influence on the analysis of energy exchanges. The systemstability analysis is analysed using the Nyquist diagram, which ismore suitable for analyzing complex nonlinear systems with morecompact and reliable indicators of stability in comparison withgain/phase margins shown in the Bode diagram. In addition, aselection method of the interconnected capacitor of the DC CFCis proposed under different operating conditions. The impact ofthe switching frequencies of the DC CFC on the control ranges ofthe DC current flows is analyzed. The effectiveness of the Nyquistanalysis and the capacitance selection method is verified bysimulation studies using PSCAD/EMTDC. The obtained control ranges of the DC CFC with different switching frequenciesand capacitances would be useful for practical engineeringapplications.展开更多
When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First ...When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First COMFAN (Committee on FANs) Meeting (Bouma eta|., 1985a), have remained the single most significant compilation of data on submarine fans. The 1970s were the "heyday" of submarine fan models. In the 21st century, the general focus has shifted from submarine fans to submarine mass movements, internal waves and tides, and contourites. The purpose of this review is to illustrate the complexity of issues surrounding the origin and classification of submarine fans. The principal ele- ments of submarine fans, composed of canyons, channels, and lobes, are discussed using nine modern case studies from the Mediterranean Sea, the Equatorial Atlantic, the Gulf of Mexico, the North Pacific, the NE Indian Ocean (Bay of Bengal), and the East Sea (Korea). The Annot Sandstone (Eocene-Oligocene), exposed at Peira-Cava area, SE France, which served as the type locality for the "Bouma Sequence", was reexamined. The field details are documented in questioning the validity of the model, which was the basis for the turbidite- fan link. The 29 fan-related models that are of conceptual significance, developed during the period 1970-2015, are discussed using modem and ancient systems. They are: (I) the classic submarine fan model with attached lobes, (2) the detached-lobe model, (3) the channel-levee complex without lobes, (4) the delta-fed ramp model, (5) the gully-lobe model, (6) the suprafan lobe model, (7) the depositional lobe model, (8) the fan lobe model, (9) the ponded lobe model, (I0) the nine models based on grain size and sediment source, (11) the four fan models based on tectonic settings, (12) the Jackfork debrite model, (13) the basin-floor fan model, (14) supercritical and subcritical fans, and (15) the three types of fan reservoirs. Each model is unique, and the long-standing belief that submarine fans are composed of turbidites, in particular, of gravelly and sandy high-density turbi- dites, is a myth. This is because there are no empirical data to validate the existence of gravelly and sandy high-density turbidity currents in the modern marine environments. Also, there are no experimental documentation of true turbidity currents that can trans- port gravels and coarse sands in turbulent suspension. Mass-transport processes, which include slides, slumps, and debris flows (but not turbidity currenrs), are the most viable mechanisms for transporting gravels and sands into the deep sea. The prevailing notion that submarine fans develop during periods of sea-level lowstands is also a myth. The geologic reality is that frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc.) are more important in controlling deposition of deep-water sands than sporadic long- term events that last for thousands to millions of years (e.g., lowstand systems tract). Submarine fans are still in a stage of muddled turbidite paradigm because the concept of high-density turbidity currents is incommensurable.展开更多
With the increasing penetration of renewable energy,power grid operators are observing both fast and large fluctuations in power and voltage profiles on a daily basis.Fast and accurate control actions derived in real ...With the increasing penetration of renewable energy,power grid operators are observing both fast and large fluctuations in power and voltage profiles on a daily basis.Fast and accurate control actions derived in real time are vital to ensure system security and economics.To this end,solving alternating current(AC)optimal power flow(OPF)with operational constraints remains an important yet challenging optimization problem for secure and economic operation of the power grid.This paper adopts a novel method to derive fast OPF solutions using state-of-the-art deep reinforcement learning(DRL)algorithm,which can greatly assist power grid operators in making rapid and effective decisions.The presented method adopts imitation learning to generate initial weights for the neural network(NN),and a proximal policy optimization algorithm to train and test stable and robust artificial intelligence(AI)agents.Training and testing procedures are conducted on the IEEE 14-bus and the Illinois 200-bus systems.The results show the effectiveness of the method with significant potential for assisting power grid operators in real-time operations.展开更多
Modern power systems are experiencing larger fluctuations and more uncertainties caused by increased penetration of renewable energy sources(RESs) and power electronics equipment. Therefore, fast and accurate correcti...Modern power systems are experiencing larger fluctuations and more uncertainties caused by increased penetration of renewable energy sources(RESs) and power electronics equipment. Therefore, fast and accurate corrective control actions in real time are needed to ensure the system security and economics. This paper presents a novel method to derive realtime alternating current(AC) optimal power flow(OPF) solutions considering the uncertainties including varying renewable energy and topology changes by using state-of-the-art deep reinforcement learning(DRL) algorithm, which can effectively assist grid operators in making rapid and effective real-time decisions. The presented DRL-based approach first adopts a supervised-learning method from deep learning to generate good initial weights for neural networks, and then the proximal policy optimization(PPO) algorithm is applied to train and test the artificial intelligence(AI) agents for stable and robust performance. An ancillary classifier is designed to identify the feasibility of the AC OPF problem. Case studies conducted on the Illinois 200-bus system with wind generation variation and N-1 topology changes validate the effectiveness of the proposed method and demonstrate its great potential in promoting sustainable energy integration into the power system.展开更多
文摘The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
文摘A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.
文摘A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
文摘Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall current and constant heat flux. It is considered that the porous plate is subjected to constant heat flux. The obtained non-dimensional, non-similar coupled non-linear and partial differential equations have been solved by explicit finite difference technique. Numerical solutions for velocities, temperature and concentration distributions are obtained for various parameters by the above mentioned technique. The local and average shear stresses, Nusselt number as well as Sherwood number are also investigated. The stability conditions and convergence criteria of the explicit finite difference scheme are established for finding the restriction of the values of various parameters to get more accuracy. The obtained results are illustrated with the help of graphs to observe the effects of various legitimate parameters.
基金supported by UK-China Smart Grid Project ERIFT via UK EPSRC,University of Birmingham SiGuang Li Scholarship and China Scholarship Council。
文摘This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).
基金National Natural Science Foundation of China under Grant 51807091Natural Science Foundation of Jiangsu Province BK20180478+1 种基金the China Postdoctoral Science Foundation under Grant 2019M661846EPSRC under Grant EP/N032888/1.
文摘Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation of twoline/multi-lineDC current flow controllers (CFCs), a small-signalmodel of the DC CFCs integrated M2TDC grids is derived,studying the impact of the power losses of the DC CFC andtheir influence on the analysis of energy exchanges. The systemstability analysis is analysed using the Nyquist diagram, which ismore suitable for analyzing complex nonlinear systems with morecompact and reliable indicators of stability in comparison withgain/phase margins shown in the Bode diagram. In addition, aselection method of the interconnected capacitor of the DC CFCis proposed under different operating conditions. The impact ofthe switching frequencies of the DC CFC on the control ranges ofthe DC current flows is analyzed. The effectiveness of the Nyquistanalysis and the capacitance selection method is verified bysimulation studies using PSCAD/EMTDC. The obtained control ranges of the DC CFC with different switching frequenciesand capacitances would be useful for practical engineeringapplications.
文摘When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First COMFAN (Committee on FANs) Meeting (Bouma eta|., 1985a), have remained the single most significant compilation of data on submarine fans. The 1970s were the "heyday" of submarine fan models. In the 21st century, the general focus has shifted from submarine fans to submarine mass movements, internal waves and tides, and contourites. The purpose of this review is to illustrate the complexity of issues surrounding the origin and classification of submarine fans. The principal ele- ments of submarine fans, composed of canyons, channels, and lobes, are discussed using nine modern case studies from the Mediterranean Sea, the Equatorial Atlantic, the Gulf of Mexico, the North Pacific, the NE Indian Ocean (Bay of Bengal), and the East Sea (Korea). The Annot Sandstone (Eocene-Oligocene), exposed at Peira-Cava area, SE France, which served as the type locality for the "Bouma Sequence", was reexamined. The field details are documented in questioning the validity of the model, which was the basis for the turbidite- fan link. The 29 fan-related models that are of conceptual significance, developed during the period 1970-2015, are discussed using modem and ancient systems. They are: (I) the classic submarine fan model with attached lobes, (2) the detached-lobe model, (3) the channel-levee complex without lobes, (4) the delta-fed ramp model, (5) the gully-lobe model, (6) the suprafan lobe model, (7) the depositional lobe model, (8) the fan lobe model, (9) the ponded lobe model, (I0) the nine models based on grain size and sediment source, (11) the four fan models based on tectonic settings, (12) the Jackfork debrite model, (13) the basin-floor fan model, (14) supercritical and subcritical fans, and (15) the three types of fan reservoirs. Each model is unique, and the long-standing belief that submarine fans are composed of turbidites, in particular, of gravelly and sandy high-density turbi- dites, is a myth. This is because there are no empirical data to validate the existence of gravelly and sandy high-density turbidity currents in the modern marine environments. Also, there are no experimental documentation of true turbidity currents that can trans- port gravels and coarse sands in turbulent suspension. Mass-transport processes, which include slides, slumps, and debris flows (but not turbidity currenrs), are the most viable mechanisms for transporting gravels and sands into the deep sea. The prevailing notion that submarine fans develop during periods of sea-level lowstands is also a myth. The geologic reality is that frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc.) are more important in controlling deposition of deep-water sands than sporadic long- term events that last for thousands to millions of years (e.g., lowstand systems tract). Submarine fans are still in a stage of muddled turbidite paradigm because the concept of high-density turbidity currents is incommensurable.
基金supported by State Grid Science and Technology Program“Research on Real-time Autonomous Control Strategies for Power Grid Based on AI Technologies”(No.5700-201958523A-0-0-00)
文摘With the increasing penetration of renewable energy,power grid operators are observing both fast and large fluctuations in power and voltage profiles on a daily basis.Fast and accurate control actions derived in real time are vital to ensure system security and economics.To this end,solving alternating current(AC)optimal power flow(OPF)with operational constraints remains an important yet challenging optimization problem for secure and economic operation of the power grid.This paper adopts a novel method to derive fast OPF solutions using state-of-the-art deep reinforcement learning(DRL)algorithm,which can greatly assist power grid operators in making rapid and effective decisions.The presented method adopts imitation learning to generate initial weights for the neural network(NN),and a proximal policy optimization algorithm to train and test stable and robust artificial intelligence(AI)agents.Training and testing procedures are conducted on the IEEE 14-bus and the Illinois 200-bus systems.The results show the effectiveness of the method with significant potential for assisting power grid operators in real-time operations.
文摘Modern power systems are experiencing larger fluctuations and more uncertainties caused by increased penetration of renewable energy sources(RESs) and power electronics equipment. Therefore, fast and accurate corrective control actions in real time are needed to ensure the system security and economics. This paper presents a novel method to derive realtime alternating current(AC) optimal power flow(OPF) solutions considering the uncertainties including varying renewable energy and topology changes by using state-of-the-art deep reinforcement learning(DRL) algorithm, which can effectively assist grid operators in making rapid and effective real-time decisions. The presented DRL-based approach first adopts a supervised-learning method from deep learning to generate good initial weights for neural networks, and then the proximal policy optimization(PPO) algorithm is applied to train and test the artificial intelligence(AI) agents for stable and robust performance. An ancillary classifier is designed to identify the feasibility of the AC OPF problem. Case studies conducted on the Illinois 200-bus system with wind generation variation and N-1 topology changes validate the effectiveness of the proposed method and demonstrate its great potential in promoting sustainable energy integration into the power system.