期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
Maximizing Resource Efficiency in Cloud Data Centers through Knowledge-Based Flower Pollination Algorithm (KB-FPA)
1
作者 Nidhika Chauhan Navneet Kaur +4 位作者 Kamaljit Singh Saini Sahil Verma Kavita Ruba Abu Khurma Pedro A.Castillo 《Computers, Materials & Continua》 SCIE EI 2024年第6期3757-3782,共26页
Cloud computing is a dynamic and rapidly evolving field,where the demand for resources fluctuates continuously.This paper delves into the imperative need for adaptability in the allocation of resources to applications... Cloud computing is a dynamic and rapidly evolving field,where the demand for resources fluctuates continuously.This paper delves into the imperative need for adaptability in the allocation of resources to applications and services within cloud computing environments.The motivation stems from the pressing issue of accommodating fluctuating levels of user demand efficiently.By adhering to the proposed resource allocation method,we aim to achieve a substantial reduction in energy consumption.This reduction hinges on the precise and efficient allocation of resources to the tasks that require those most,aligning with the broader goal of sustainable and eco-friendly cloud computing systems.To enhance the resource allocation process,we introduce a novel knowledge-based optimization algorithm.In this study,we rigorously evaluate its efficacy by comparing it to existing algorithms,including the Flower Pollination Algorithm(FPA),Spark Lion Whale Optimization(SLWO),and Firefly Algo-rithm.Our findings reveal that our proposed algorithm,Knowledge Based Flower Pollination Algorithm(KB-FPA),consistently outperforms these conventional methods in both resource allocation efficiency and energy consumption reduction.This paper underscores the profound significance of resource allocation in the realm of cloud computing.By addressing the critical issue of adaptability and energy efficiency,it lays the groundwork for a more sustainable future in cloud computing systems.Our contribution to the field lies in the introduction of a new resource allocation strategy,offering the potential for significantly improved efficiency and sustainability within cloud computing infrastructures. 展开更多
关键词 Cloud computing resource allocation energy consumption optimization algorithm flower pollination algorithm
下载PDF
Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm
2
作者 Adnan Hasan Bdair Aighuraibawi Selvakumar Manickam +6 位作者 Rosni Abdullah Zaid Abdi Alkareem Alyasseri Ayman Khallel Dilovan Asaad Zebari Hussam Mohammed Jasim Mazin Mohammed Abed Zainb Hussein Arif 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期553-574,共22页
Internet Protocol version 6(IPv6)is the latest version of IP that goal to host 3.4×10^(38)unique IP addresses of devices in the network.IPv6 has introduced new features like Neighbour Discovery Protocol(NDP)and A... Internet Protocol version 6(IPv6)is the latest version of IP that goal to host 3.4×10^(38)unique IP addresses of devices in the network.IPv6 has introduced new features like Neighbour Discovery Protocol(NDP)and Address Auto-configuration Scheme.IPv6 needed several protocols like the Address Auto-configuration Scheme and Internet Control Message Protocol(ICMPv6).IPv6 is vulnerable to numerous attacks like Denial of Service(DoS)and Distributed Denial of Service(DDoS)which is one of the most dangerous attacks executed through ICMPv6 messages that impose security and financial implications.Therefore,an Intrusion Detection System(IDS)is a monitoring system of the security of a network that detects suspicious activities and deals with amassive amount of data comprised of repetitive and inappropriate features which affect the detection rate.A feature selection(FS)technique helps to reduce the computation time and complexity by selecting the optimum subset of features.This paper proposes a method for detecting DDoS flooding attacks(FA)based on ICMPv6 messages using a Binary Flower PollinationAlgorithm(BFPA-FA).The proposed method(BFPA-FA)employs FS technology with a support vector machine(SVM)to identify the most relevant,influential features.Moreover,The ICMPv6-DDoS dataset was used to demonstrate the effectiveness of the proposed method through different attack scenarios.The results show that the proposed method BFPAFA achieved the best accuracy rate(97.96%)for the ICMPv6 DDoS detection with a reduced number of features(9)to half the total(19)features.The proven proposed method BFPA-FAis effective in the ICMPv6 DDoS attacks via IDS. 展开更多
关键词 IPv6 ICMPV6 DDoS feature selection flower pollination algorithm anomaly detection
下载PDF
A New Flower Pollination Algorithm Strategy for MPPT of Partially Shaded Photovoltaic Arrays
3
作者 Muhannad J.Alshareef 《Intelligent Automation & Soft Computing》 2023年第12期297-313,共17页
Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading pose... Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading poses a challenge to the tracking operation.Under partial shade conditions,the global maximum power point(GMPP)may be missed by most traditional maximum power point tracker.The flower pollination algorithm(FPA)and particle swarm optimization(PSO)are two examples of metaheuristic techniques that can be used to solve the issue of failing to track the GMPP.This paper discusses and resolves all issues associated with using the standard FPA method as the MPPT for PV systems.The first issue is that the initial values of pollen are determined randomly at first,which can lead to premature convergence.To minimize the convergence time and enhance the possibility of detecting the GMPP,the initial pollen values were modified so that they were near the expected peak positions.Secondly,in the modified FPA,population fitness and switch probability values both influence swapping between two-mode optimization,which may improve the flower pollination algorithm’s tracking speed.The performance of the modified flower pollination algorithm(MFPA)is assessed through a comparison with the perturb and observe(P&O)method and the standard FPA method.The simulation results reveal that under different partial shading conditions,the tracking time for MFPA is 0.24,0.24,0.22,and 0.23 s,while for FPA,it is 0.4,0.35,0.45,and 0.37 s.Additionally,the simulation results demonstrate that MFPA achieves higher MPPT efficiency in the same four partial shading conditions,with values of 99.98%,99.90%,99.93%,and 99.26%,compared to FPA with MPPT efficiencies of 99.93%,99.88%,99.91%,and 99.18%.Based on the findings from simulations,the proposed method effectively and accurately tracks the GMPP across a diverse set of environmental conditions. 展开更多
关键词 flower pollination algorithm(fpa) maximum power point tracking(MPPT) partial shading conditions(PSCs) photovoltaic(PV)system
下载PDF
A Novel Flower Pollination Algorithm to Solve Load Frequency Control for a Hydro-Thermal Deregulated Power System
4
作者 D. Lakshmi A. Peer Fathima Ranganath Muthu 《Circuits and Systems》 2016年第4期166-178,共13页
Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at pr... Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at predetermined values for the corresponding changes in load demand. In this paper, the two-area, hydrothermal deregulated power system is considered with Redox Flow Batteries (RFB) in both the areas. RFB is an energy storage device, which converts electrical energy into chemical energy, that is used to meet the sudden requirement of real power load and hence very effective in reducing the peak shoots. With conventional proportional-integral (PI) controller, it is difficult to get the optimum solution. Hence, intelligent techniques are used to tune the PI controller of the LFC to improve the dynamic response. In the family of intelligent techniques, a recent nature inspired algorithm called the Flower Pollination Algorithm (FPA) gives the global minima solution. The optimal value of the controller is determined by minimizing the ISE. The results show that the proposed FPA tuned PI controller improves the dynamic response of the deregulated system faster than the PI controller for different cases. The simulation is implemented in MATLAB environment. 展开更多
关键词 Load Frequency Control Redox Flow Battery Proportional Integral Controller flower pollination algorithm
下载PDF
Adaptive Flower Pollination Algorithm Based on Chaotic Map
5
作者 Yu Li Juan Zheng Yi-ran Zhao 《国际计算机前沿大会会议论文集》 2019年第2期442-444,共3页
Flower pollination algorithm (FPA) is one of the well-known evolutionary techniques used extensively to solve optimization problems. Despite its efficiency and wide use, the identical search behaviors may lead the alg... Flower pollination algorithm (FPA) is one of the well-known evolutionary techniques used extensively to solve optimization problems. Despite its efficiency and wide use, the identical search behaviors may lead the algorithm to converge to local optima. In this paper, an adaptive FPA based on chaotic map (CAFPA) is proposed. The proposed algorithm first used the ergodicity of the logistic chaos mechanism, and chaotic mapping of the initial population to make the initial iterative population more evenly distributed in the solution space. Then at the self-pollination stage, the over-random condition of the gamete renewal was improved, the traction force of contemporary optimal position was given, and adaptive logarithmic inertia weight was introduced to adjust the proportion between the contemporary pollen position and disturbance to improve the performance of the algorithm. By comparing the new algorithm with three famous optimization algorithms, the accuracy and performance of the proposed approach are evaluated by 14 well-known benchmark functions. Statistical comparisons of experimental results show that CAFPA is superior to FPA, PSO, and BOA in terms of convergence speed and robustness. 展开更多
关键词 flower pollination algorithm CHAOTIC map TRACTION force ADAPTIVE
下载PDF
Flower Pollination Heuristics for Nonlinear Active Noise Control Systems 被引量:1
6
作者 Wasim Ullah Khan Yigang He +3 位作者 Muhammad Asif Zahoor Raja Naveed Ishtiaq Chaudhary Zeshan Aslam Khan Syed Muslim Shah 《Computers, Materials & Continua》 SCIE EI 2021年第4期815-834,共20页
In this paper,a novel design of the flower pollination algorithm is presented for model identification problems in nonlinear active noise control systems.The recently introduced flower pollination based heuristics is ... In this paper,a novel design of the flower pollination algorithm is presented for model identification problems in nonlinear active noise control systems.The recently introduced flower pollination based heuristics is implemented to minimize the mean squared error based merit/cost function representing the scenarios of active noise control system with linear/nonlinear and primary/secondary paths based on the sinusoidal signal,random and complex random signals as noise interferences.The flower pollination heuristics based active noise controllers are formulated through exploitation of nonlinear filtering with Volterra series.The comparative study on statistical observations in terms of accuracy,convergence and complexity measures demonstrates that the proposed meta-heuristic of flower pollination algorithm is reliable,accurate,stable as well as robust for active noise control system.The accuracy of the proposed nature inspired computing of flower pollination is in good agreement with the state of the art counterpart solvers based on variants of genetic algorithms,particle swarm optimization,backtracking search optimization algorithm,fireworks optimization algorithm along with their memetic combination with local search methodologies.Moreover,the central tendency and variation based statistical indices further validate the consistency and reliability of the proposed scheme mimic the mathematical model for the process of flower pollination systems. 展开更多
关键词 Active noise control computational heuristics volterra filtering flower pollination algorithm
下载PDF
Flower Pollination Heuristics for Parameter Estimation of Electromagnetic Plane Waves
7
作者 Sadiq Akbar Muhammad Asif Zahoor Raja +2 位作者 Naveed Ishtiaq Chaudhary Fawad Zaman Hani Alquhayz 《Computers, Materials & Continua》 SCIE EI 2021年第8期2529-2543,共15页
For the last few decades,the parameter estimation of electromagnetic plane waves i.e.,far field sources,impinging on antenna array geometries has attracted a lot of researchers due to their use in radar,sonar and unde... For the last few decades,the parameter estimation of electromagnetic plane waves i.e.,far field sources,impinging on antenna array geometries has attracted a lot of researchers due to their use in radar,sonar and under water acoustic environments.In this work,nature inspired heuristics based on the flower pollination algorithm(FPA)is designed for the estimation problem of amplitude and direction of arrival of far field sources impinging on uniform linear array(ULA).Using the approximation in mean squared error sense,a fitness function of the problem is developed and the strength of the FPA is utilized for optimization of the cost function representing scenarios for various number of sources non-coherent located in the far field.The worth of the proposed FPA based nature inspired computing heuristic is established through assessment studies on fitness,histograms,cumulative distribution function and box plots analysis.The other worthy perks of the proposed scheme include simplicity of concept,ease in the implementation,extendibility and wide range of applicability to solve complex optimization problems.These salient features make the proposed approach as an attractive alternative to be exploited for solving different parameter estimation problems arising in nonlinear systems,power signal modelling,image processing and fault diagnosis. 展开更多
关键词 Direction of arrival flower pollination algorithm plane waves parameter estimation
下载PDF
求解带时间窗车辆路径问题的改进FPA
8
作者 丛扬潇 袁志高 +2 位作者 李素 姜缘平 王祖荣 《计算机工程与设计》 北大核心 2024年第3期793-798,共6页
车辆路径规划问题广泛应用于物流行业,为解决这一NP难的组合优化问题,提出一种求解带时间窗车辆路径问题的改进花授粉算法。针对FPA存在寻优精度低和过早陷入局部最优等缺陷,在原始FPA中引入遗传算法的交叉和变异因子,设计基于精英父代... 车辆路径规划问题广泛应用于物流行业,为解决这一NP难的组合优化问题,提出一种求解带时间窗车辆路径问题的改进花授粉算法。针对FPA存在寻优精度低和过早陷入局部最优等缺陷,在原始FPA中引入遗传算法的交叉和变异因子,设计基于精英父代的多点交叉算子和单亲多点基因变异换位算子;对FPA中的转换概率p进行自适应调整并重新定义全局授粉和局部授粉操作;采用国际通用标准测试集Solomon对算法进行测试,将求得结果与已知多个算法求得的结果进行对比分析。其结果表明,改进FPA求解带时间窗车辆路径问题是可行有效的。 展开更多
关键词 花授粉算法 遗传算法 路径优化 时间窗 自适应 算法改进 物流配送
下载PDF
Binary Hybrid Artificial Hummingbird with Flower Pollination Algorithm for Feature Selection in Parkinson’s Disease Diagnosis
9
作者 Liuyan Feng Yongquan Zhou Qifang Luo 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期1003-1021,共19页
Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans.Some experimental data regarding Parkinson’s patients are redundant and irrelevant,posing significant challenges for di... Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans.Some experimental data regarding Parkinson’s patients are redundant and irrelevant,posing significant challenges for disease detection.Therefore,there is a need to devise an effective method for the selective extraction of disease-specific information,ensuring both accuracy and the utilization of fewer features.In this paper,a Binary Hybrid Artificial Hummingbird and Flower Pollination Algorithm(FPA),called BFAHA,is proposed to solve the problem of Parkinson’s disease diagnosis based on speech signals.First,combining FPA with Artificial Hummingbird Algorithm(AHA)can take advantage of the strong global exploration ability possessed by FPA to improve the disadvantages of AHA,such as premature convergence and easy falling into local optimum.Second,the Hemming distance is used to determine the difference between the other individuals in the population and the optimal individual after each iteration,if the difference is too significant,the cross-mutation strategy in the genetic algorithm(GA)is used to induce the population individuals to keep approaching the optimal individual in the random search process to speed up finding the optimal solution.Finally,an S-shaped function converts the improved algorithm into a binary version to suit the characteristics of the feature selection(FS)tasks.In this paper,10 high-dimensional datasets from UCI and the ASU are used to test the performance of BFAHA and apply it to Parkinson’s disease diagnosis.Compared with other state-of-the-art algorithms,BFAHA shows excellent competitiveness in both the test datasets and the classification problem,indicating that the algorithm proposed in this study has apparent advantages in the field of feature selection. 展开更多
关键词 Artificial Hummingbird algorithm flower pollination algorithm Feature selection Parkinson’s disease Meta-heuristic
原文传递
基于改进神经网络的医院通信安全态势感知方法
10
作者 邓从香 《电子设计工程》 2025年第1期166-170,175,共6页
针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模... 针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模型。利用花朵授粉算法完成改进RBF神经网络训练。通过径向基函数对输入数据进行非线性变换,将得到的权值进行加权求和,得到当前通信网络信号的安全态势预测结果。实验结果显示,应用该文方法的医院通信网络异常信息可在1 s内完成感知。 展开更多
关键词 改进神经网络 医院通信 安全态势 小波消噪 信号去噪 花朵授粉算法
下载PDF
基于改进FPA算法的配电网光伏消纳能力评估 被引量:11
11
作者 梁海平 王翠 +3 位作者 王正平 邢志坤 郑连跃 刘英培 《可再生能源》 CAS 北大核心 2019年第2期190-198,共9页
配电网中接入分布式光伏电源会带来诸多不利影响,研究配电网分布式光伏的消纳能力问题对维持配电网的安全运行至关重要。文章研究了分布式光伏电源接入对配电网电能质量、短路容量及网损的影响,以分布式光伏电源接入量最大、网损最小为... 配电网中接入分布式光伏电源会带来诸多不利影响,研究配电网分布式光伏的消纳能力问题对维持配电网的安全运行至关重要。文章研究了分布式光伏电源接入对配电网电能质量、短路容量及网损的影响,以分布式光伏电源接入量最大、网损最小为目标函数,以电压偏差、电压波动及短路容量为约束条件,建立了分布式光伏消纳能力评估模型。根据所建模型特点,提出了一种改进的花授粉优化算法(Flower Pollination Algorithm,FPA),并对IEEE33节点系统及实际配电网进行求解。最后验证了所建模型的正确性及算法的有效性。 展开更多
关键词 分布式光伏 配电网 改进花授粉优化算法 消纳能力
下载PDF
基于BP神经网络和FPA的高速干切滚齿工艺参数低碳优化决策 被引量:6
12
作者 钟健 阎春平 +1 位作者 曹卫东 陈诚 《工程设计学报》 CSCD 北大核心 2017年第4期449-458,共10页
为解决高速干切滚齿工艺参数决策中存在的主观依赖性强和用时较长的问题,并实现滚齿加工低碳化,提出一种基于实例推理和优化算法的高速干切滚齿工艺参数低碳优化决策方法。利用反向传播(back propagation,BP)神经网络构建加工效果评价... 为解决高速干切滚齿工艺参数决策中存在的主观依赖性强和用时较长的问题,并实现滚齿加工低碳化,提出一种基于实例推理和优化算法的高速干切滚齿工艺参数低碳优化决策方法。利用反向传播(back propagation,BP)神经网络构建加工效果评价值的预测模型,通过改进K-means聚类算法获取待决策工艺问题的相似实例抽取集,以此构建待优化工艺参数约束,再运用花朵授粉算法(flower pollination algorithm,FPA),以碳耗最小为优化目标,获取待决策工艺问题的最优工艺参数。以某企业高速干切滚齿机为例,验证了该方法的可行性和有效性。使用该方法生成的工艺参数,加工效果更好,碳耗更低,可避免对工艺手册或个人经验的依赖,提高决策效率。研究结果有利于高速干切滚齿机的低碳运行,对机械制造企业实现低碳制造具有一定的参考意义。 展开更多
关键词 高速干切滚齿 工艺参数 低碳 BP神经网络 花朵授粉算法
下载PDF
基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测 被引量:48
13
作者 张淑清 李君 +3 位作者 姜安琦 黄娇 刘海涛 艾洪克 《电网技术》 EI CSCD 北大核心 2022年第8期3269-3279,共11页
短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollinat... 短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。 展开更多
关键词 短期电力负荷预测 变分模态分解 花授粉算法 双向长短时记忆神经网络 误差纠正
下载PDF
基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测 被引量:12
14
作者 张淑清 杨振宁 +3 位作者 姜安琦 李君 刘海涛 穆勇 《太阳能学报》 EI CAS CSCD 北大核心 2022年第6期204-211,共8页
综合考虑风电功率序列及气象数据的多维特征,提出一种弹性网稀疏核主成分分析(EN-SKPCA)降维方法,对气象因素降维并表述为回归优化型问题,添加的弹性网惩罚解决了KPCA重构主成分难以解释构成的问题;提出花授粉算法(FPA)优化长短时记忆... 综合考虑风电功率序列及气象数据的多维特征,提出一种弹性网稀疏核主成分分析(EN-SKPCA)降维方法,对气象因素降维并表述为回归优化型问题,添加的弹性网惩罚解决了KPCA重构主成分难以解释构成的问题;提出花授粉算法(FPA)优化长短时记忆神经网络(LSTMNN)预测模型,可自动筛选出最佳超参数,降低了参数经验设置所带来的随机性。该方法解决了突变天气的影响,提高了预测精度。对2017年宁夏麻黄山第一风电场实测数据实验,证明了该方法的优越性。 展开更多
关键词 风电 功率预测 气象 降维 弹性网稀疏核主成分分析 花授粉算法优化 长短时记忆神经网络
下载PDF
基于BASFPA-BP的可靠性预测模型研究
15
作者 李红辉 陈博 +1 位作者 鲁姝艺 张骏温 《计算机科学》 CSCD 北大核心 2023年第5期31-37,共7页
软件可靠性预测以软件可靠性预测模型为基础,对软件的可靠性以及与其直接相关的度量进行分析、评价和预测,利用软件运行中所收集的失效数据对未来的软件可靠性进行预测,成为了评估软件失效行为和保障软件可靠程度的重要手段。BP神经网... 软件可靠性预测以软件可靠性预测模型为基础,对软件的可靠性以及与其直接相关的度量进行分析、评价和预测,利用软件运行中所收集的失效数据对未来的软件可靠性进行预测,成为了评估软件失效行为和保障软件可靠程度的重要手段。BP神经网络结构简单、参数少、易实现,在软件可靠性预测领域已经得到了广泛应用。然而基于传统BP神经网络搭建的软件可靠性预测模型的预测精度无法达到预期目标,因此提出了基于BASFPA-BP的软件可靠性预测模型。该模型利用软件失效数据,在BP神经网络训练过程中利用BASFPA算法优化网络权值、阈值,从而提高模型的预测精度。选用3组公开的软件失效数据,将实际值与预测值的均方误差作为预测结果的衡量标准,同时将BASFPA-BP与FPA-BP,BP,Elman这3种模型进行对比研究。实验结果表明,基于BASFPA-BP的软件可靠性预测模型在同类型模型中实现了较高的预测精度。 展开更多
关键词 软件可靠性预测模型 天牛须搜索算法 花朵授粉算法 BASfpa
下载PDF
基于FPA优化的GP算法的飞行员认知状态识别 被引量:4
16
作者 蔡正祥 吴奇 +1 位作者 黄丹 傅山 《电光与控制》 北大核心 2016年第11期78-84,共7页
飞行员认知状态是影响人机飞行控制系统表现的重要因素。认知状态通常不能被直接测得,需借助于诸多的生理信号间接分析。根据典型生理信号的时频特点,应用小波分析建立信号特征集,并提出了一种基于花粉传播算法的高斯过程分类模型,用以... 飞行员认知状态是影响人机飞行控制系统表现的重要因素。认知状态通常不能被直接测得,需借助于诸多的生理信号间接分析。根据典型生理信号的时频特点,应用小波分析建立信号特征集,并提出了一种基于花粉传播算法的高斯过程分类模型,用以分析全动飞行模拟实验中的飞行员认知状态。通过对比分类结果与飞行员的NASATLX测评结果,验证该模型对飞行员认知状态识别的有效性。 展开更多
关键词 认知状态 飞行控制 高斯过程 花粉传播算法 小波分析
下载PDF
基于FPA-ELM模型的中长期径流预测——以雅砻江流域为例 被引量:5
17
作者 洪敏 艾萍 岳兆新 《人民长江》 北大核心 2022年第6期119-125,共7页
为提高中长期径流预测效果,提出一种花授粉算法(FPA)优化极限学习机模型(ELM)的中长期径流预测方法。首先,构造反映流域水情丰枯变化的流域径流整体趋势变化因子(COM),并采用偏互信息法获得影响中长期径流过程变化的关键因子集;然后,结... 为提高中长期径流预测效果,提出一种花授粉算法(FPA)优化极限学习机模型(ELM)的中长期径流预测方法。首先,构造反映流域水情丰枯变化的流域径流整体趋势变化因子(COM),并采用偏互信息法获得影响中长期径流过程变化的关键因子集;然后,结合K折交叉验证与花授粉算法优化ELM参数,构建FPA-ELM模型,完成中长期径流预测。最后,以雅砻江流域为研究区域,将构建的FPA-ELM模型与BP神经网络(BPNN)、支持向量机(SVM)、ELM和GA-ELM等模型进行对比分析。结果表明:FPA-ELM模型的平均绝对百分比误差(E_(mape))为20.15%,均方根误差(E_(rmse))为268.77 m^(3)/s,确定性系数(E_(dc))为0.9169,合格率(E_(qr))为60.0%,运算时间为19.32 s,均优于上述4种数据驱动模型。研究成果可为基于智能算法的中长期径流预测提供借鉴。 展开更多
关键词 中长期径流预测 数据驱动模型 因子筛选 花授粉算法 极限学习机 雅砻江流域
下载PDF
基于改进FPA算法的含分布式光伏配电网选址定容多目标优化方法 被引量:17
18
作者 陈德炜 施永明 +2 位作者 徐威 肖云佳 吴田 《电力系统保护与控制》 EI CSCD 北大核心 2022年第7期120-125,共6页
近年来配电网分布式光伏数量不断增加,不合理的分布式光伏接入位置和容量给配电网带来了极大的冲击。针对分布式光伏接入位置和容量不合理给配电网带来的影响,提出了一种以投资成本最低、网损最小、电压质量最优为优化目标的选址定容模... 近年来配电网分布式光伏数量不断增加,不合理的分布式光伏接入位置和容量给配电网带来了极大的冲击。针对分布式光伏接入位置和容量不合理给配电网带来的影响,提出了一种以投资成本最低、网损最小、电压质量最优为优化目标的选址定容模型。结合遗传算法、混沌序列和花授粉算法求解优化模型。通过混沌序列对花粉位置进行初始化,保证种群的多样性。在花授粉算法局部最优时,最优解被用作遗传算法的初始参数进行选择、交叉、变异来更新种群,保持种群的多样性,提高算法的寻优能力。通过仿真对所提方法的可行性进行验证。结果表明,改进算法的收敛性明显提高,从改进前300次提升到改进后40次迭代后开始收敛。优化配置后,电压效应较差的节点和损耗都得到了明显改善。该研究为含分布式电源的配电网选址定容提供一定的参考和借鉴。 展开更多
关键词 配电网 花授粉算法 混沌序列 遗传算法 分布式光伏 选址定容
下载PDF
基于FPA-VVRKFA的手势表面肌电信号识别 被引量:1
19
作者 季祥 白端元 《长春理工大学学报(自然科学版)》 2021年第6期109-115,共7页
表面肌电(Surface Electromyography,sEMG)信号直接、客观地反映了人体肌肉的活动情况,其作为一种便捷的无侵入式肌电检测方法,被广泛地应用于人体动作识别领域。针对表面肌电信号的手势识别问题,提出了一种基于时域特征和向量正则核函... 表面肌电(Surface Electromyography,sEMG)信号直接、客观地反映了人体肌肉的活动情况,其作为一种便捷的无侵入式肌电检测方法,被广泛地应用于人体动作识别领域。针对表面肌电信号的手势识别问题,提出了一种基于时域特征和向量正则核函数逼近方法(Vector-Valued Regularized Kernel Function Approximation,VVRKFA)的手势识别方法。首先,对MYO臂环采集到的sEMG数据进行活动段检测以提取出活动段;随后,从活动段信号中提取平均绝对值、波形长度、过零点数、均方根和Willison幅值等五个时域特征;最后,应用VVRKFA分类器对提取到的sEMG进行分类识别,同时采用花授粉算法(Flower Pollination Algorithm,FPA)优化分类器参数以保证最佳分类能力。实验结果表明提出的方法在手势动作模式识别上取得了较高的准确率。 展开更多
关键词 表面肌电信号 手势识别 时域特征 向量正则核函数逼近 花授粉算法
下载PDF
A Machine Learning Based Algorithm to Process Partial Shading Effects in PV Arrays
20
作者 Kamran Sadiq Awan Tahir Mahmood +2 位作者 Mohammad Shorfuzzaman Rashid Ali Raja Majid Mehmood 《Computers, Materials & Continua》 SCIE EI 2021年第7期29-43,共15页
Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(M... Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP. 展开更多
关键词 Maximum power point tracking flower pollination algorithm opposition-based-learning flower pollination algorithm hybridized with opposition based learning
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部