Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplantin...Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.展开更多
Field establishment of cashew has been seriously hampered by long delay in the nursery. This has led to transplanting of overgrown seedlings resulting in high transplant mortality, especially during the first dry seas...Field establishment of cashew has been seriously hampered by long delay in the nursery. This has led to transplanting of overgrown seedlings resulting in high transplant mortality, especially during the first dry season on the field. The experiment was set up to study field establishment of cashew transplants as affected by the nursery periods. Four nursery periods were tried. These were cashew transplanted at 3, 4, 8 and 12 weeks after sowing (WAS). The experiment was laid out in randomized complete block with three replicates. Records were taken on morphological parameters and survival percentage of the transplants till fruiting. Cashew seedlings transplanted at 12 WAS had better morphological plant parameters compared to other transplants. At 3 months after transplanting (MAT), cashew transplants of 12 WAS were 172.6%, 93.7% and 38.5% taller than transplants of 3, 4 and 8 WAS, respectively and the differences were significant (P 〈 0.05). Similarly, seedlings transplanted at 12 WAS had 245.4%, ! 51.9% and 99.4% more leaves than those of 3, 4 and 8 WAS at 3 MAT, respectively. However, the survival percent of cashew seedlings transplanted at 12 WAS were 66.7% followed by that of 3 WAS with 75.0% within 12 MAT. No transplant mortality was incurred in seedlings transplanted at 4 and 8 WAS up to 12 MAT. For optimum growth and high survival rate, transplanting cashew seedlings between 4 and 8 WAS will be encouraged so as to have high plant stands, thereby, reducing supply in the following planting season.展开更多
To realize the mechanization of flowerpot seedling transplanting,a creative mechanism to transplant flowerpot seedlings was designed.The mechanism is based on noncircular gear in combination with a transplanting arm e...To realize the mechanization of flowerpot seedling transplanting,a creative mechanism to transplant flowerpot seedlings was designed.The mechanism is based on noncircular gear in combination with a transplanting arm equipped with an extensive seedling pick-up device to transplant the flowerpot seedlings from the growing tray to the flowerpot,which in accordance with the transplanting agronomy requirements.The working principles of a theoretical model and kinematic characteristics of the transplanting mechanism were analyzed.The computer-aided analysis and optimization software based on Visual Basic 6.0 was developed and used to obtain a set of special trajectory and attitude parameters satisfying the transplanting operation requirements.The optimized parameters were used for virtual manufacturing and simulation testing of the transplanting mechanism.The virtual prototype testing results are consistent with the theoretical analysis,verifying the structural design validity and rationality.The high-speed photography was used in a bench test of the transplanting mechanism with“Salvia Splendens”pot seedlings as test samples.The trajectory and attitudes of the theoretical analysis,virtual test,and physical prototype test were essentially identical.The bench test results showed that the success rate was 91.67%for the seedling pick-up device penetrating into the root mass at 35 mm,thus,the quality of the extracting seedling was satisfactory.展开更多
At present,there is a lack of miniaturized and highly reliable plug seedling transplanting mechanism in flowerpots planting operation,in order to meet the needs of large displacement and high vertical uprightness for ...At present,there is a lack of miniaturized and highly reliable plug seedling transplanting mechanism in flowerpots planting operation,in order to meet the needs of large displacement and high vertical uprightness for flower transplanting,the paper combined the transmission characteristics of the non-circular gear planetary gear train with the swing flexibility of the cam gear and proposed a double planet carrier planetary gear transplanting mechanism.The linkage of the mechanism performs variable speed rotation relative to the first planet carrier,the linkage serves as the second planet carrier,and the transplanting arm performs variable speed swing relative to the linkage.A mathematical model of a single planetary carrier mechanism was first established using the method of open linkage group solution domain synthesis,then established the kinematic equations of the second planet carrier and the transplanting arm.The two parts are combined to form the mathematical solution model of the proposed mechanism.The initial trajectory was planned according to the trajectory requirements of seedlings planting operation,the non-circular gear pitch curve in the first planet carrier was obtained and the length of the first planet carrier is 120 mm.Then using the key points’angular deviation between the initial trajectory and the improved trajectory to obtain the cam parameters which driving the transplant arm,consequently determined the length of the second planet carrier is 69.25 mm and the length of the transplant arm is 112.4 mm.Finally,the prototype of the mechanism was manufactured,and the test verified the correctness of the design method of the double planet carrier planetary gear flower potting transplanting mechanism.The transplanting success rate of this mechanism reached 94.43%,and the plug seedlings planted in flowerpots had high uprightness.This research can provide a reference for the automatic development of research on flower transplanting machines.展开更多
该文针对盆花移栽作业过程中出现的移栽手爪提取基质不完整的现象,基于离散单元分析方法,利用EDEM(enhanced discrete element method)软件建立起机构(移栽手爪)、作用对象(带有根系的盆花基质)、作用条件(花盆)间的离散元仿真模型,对...该文针对盆花移栽作业过程中出现的移栽手爪提取基质不完整的现象,基于离散单元分析方法,利用EDEM(enhanced discrete element method)软件建立起机构(移栽手爪)、作用对象(带有根系的盆花基质)、作用条件(花盆)间的离散元仿真模型,对手爪钢针的插入和提离过程进行离散元仿真分析,确定基质断层为提取基质不完整的原因,并通过对基质提离过程进行受力分析发现,导致基质发生断层现象的根本原因是基质提离总阻力大于基质内部所能提供的最大凝聚力。鉴于如上分析,利用物场分析方法提出在原有系统中添加揉盆机构的解决方案,通过对揉盆机构工作过程进行离散元仿真分析发现,在揉盆机构的作用下基质与花盆之间产生了缝隙,使花盆对基质由于粘附作用产生的摩擦阻力降低,减小了基质提离总阻力,证明在工作过程中揉盆机构可以通过减小基质提离总阻力来解决基质断层问题。分别对添加揉盆机构前后的样机进行3组100盆的花苗移栽试验,移栽手爪完整提取基质成功率从84.67%提升到97.67%。该研究将EDEM离散单元分析与物场分析方法结合应用在机构优化设计过程,可以为盆间自动化移栽领域的设备研制与开发提供参考。展开更多
基金supported by the National Key Research and Development Program of China(2017YFD0301701 and 2017YFD0301706)National Natural Science Foundation of China(31660369)。
文摘Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.
文摘Field establishment of cashew has been seriously hampered by long delay in the nursery. This has led to transplanting of overgrown seedlings resulting in high transplant mortality, especially during the first dry season on the field. The experiment was set up to study field establishment of cashew transplants as affected by the nursery periods. Four nursery periods were tried. These were cashew transplanted at 3, 4, 8 and 12 weeks after sowing (WAS). The experiment was laid out in randomized complete block with three replicates. Records were taken on morphological parameters and survival percentage of the transplants till fruiting. Cashew seedlings transplanted at 12 WAS had better morphological plant parameters compared to other transplants. At 3 months after transplanting (MAT), cashew transplants of 12 WAS were 172.6%, 93.7% and 38.5% taller than transplants of 3, 4 and 8 WAS, respectively and the differences were significant (P 〈 0.05). Similarly, seedlings transplanted at 12 WAS had 245.4%, ! 51.9% and 99.4% more leaves than those of 3, 4 and 8 WAS at 3 MAT, respectively. However, the survival percent of cashew seedlings transplanted at 12 WAS were 66.7% followed by that of 3 WAS with 75.0% within 12 MAT. No transplant mortality was incurred in seedlings transplanted at 4 and 8 WAS up to 12 MAT. For optimum growth and high survival rate, transplanting cashew seedlings between 4 and 8 WAS will be encouraged so as to have high plant stands, thereby, reducing supply in the following planting season.
基金This research was supported by the National Key Research and Development Program of the 13th Five-year Plan(Grant No.2017YFD070800).
文摘To realize the mechanization of flowerpot seedling transplanting,a creative mechanism to transplant flowerpot seedlings was designed.The mechanism is based on noncircular gear in combination with a transplanting arm equipped with an extensive seedling pick-up device to transplant the flowerpot seedlings from the growing tray to the flowerpot,which in accordance with the transplanting agronomy requirements.The working principles of a theoretical model and kinematic characteristics of the transplanting mechanism were analyzed.The computer-aided analysis and optimization software based on Visual Basic 6.0 was developed and used to obtain a set of special trajectory and attitude parameters satisfying the transplanting operation requirements.The optimized parameters were used for virtual manufacturing and simulation testing of the transplanting mechanism.The virtual prototype testing results are consistent with the theoretical analysis,verifying the structural design validity and rationality.The high-speed photography was used in a bench test of the transplanting mechanism with“Salvia Splendens”pot seedlings as test samples.The trajectory and attitudes of the theoretical analysis,virtual test,and physical prototype test were essentially identical.The bench test results showed that the success rate was 91.67%for the seedling pick-up device penetrating into the root mass at 35 mm,thus,the quality of the extracting seedling was satisfactory.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2017YFD0700800)the National Natural Science Foundation of China(Grant No.32071909,No.51775512)+1 种基金Basic public welfare research projects of Zhejiang Province(Grant No.LGN19E050002,No.LGN20E050006)Fundamental Research Funds of Zhejiang Sci-Tech University(Grant No.2020Q013).
文摘At present,there is a lack of miniaturized and highly reliable plug seedling transplanting mechanism in flowerpots planting operation,in order to meet the needs of large displacement and high vertical uprightness for flower transplanting,the paper combined the transmission characteristics of the non-circular gear planetary gear train with the swing flexibility of the cam gear and proposed a double planet carrier planetary gear transplanting mechanism.The linkage of the mechanism performs variable speed rotation relative to the first planet carrier,the linkage serves as the second planet carrier,and the transplanting arm performs variable speed swing relative to the linkage.A mathematical model of a single planetary carrier mechanism was first established using the method of open linkage group solution domain synthesis,then established the kinematic equations of the second planet carrier and the transplanting arm.The two parts are combined to form the mathematical solution model of the proposed mechanism.The initial trajectory was planned according to the trajectory requirements of seedlings planting operation,the non-circular gear pitch curve in the first planet carrier was obtained and the length of the first planet carrier is 120 mm.Then using the key points’angular deviation between the initial trajectory and the improved trajectory to obtain the cam parameters which driving the transplant arm,consequently determined the length of the second planet carrier is 69.25 mm and the length of the transplant arm is 112.4 mm.Finally,the prototype of the mechanism was manufactured,and the test verified the correctness of the design method of the double planet carrier planetary gear flower potting transplanting mechanism.The transplanting success rate of this mechanism reached 94.43%,and the plug seedlings planted in flowerpots had high uprightness.This research can provide a reference for the automatic development of research on flower transplanting machines.
文摘该文针对盆花移栽作业过程中出现的移栽手爪提取基质不完整的现象,基于离散单元分析方法,利用EDEM(enhanced discrete element method)软件建立起机构(移栽手爪)、作用对象(带有根系的盆花基质)、作用条件(花盆)间的离散元仿真模型,对手爪钢针的插入和提离过程进行离散元仿真分析,确定基质断层为提取基质不完整的原因,并通过对基质提离过程进行受力分析发现,导致基质发生断层现象的根本原因是基质提离总阻力大于基质内部所能提供的最大凝聚力。鉴于如上分析,利用物场分析方法提出在原有系统中添加揉盆机构的解决方案,通过对揉盆机构工作过程进行离散元仿真分析发现,在揉盆机构的作用下基质与花盆之间产生了缝隙,使花盆对基质由于粘附作用产生的摩擦阻力降低,减小了基质提离总阻力,证明在工作过程中揉盆机构可以通过减小基质提离总阻力来解决基质断层问题。分别对添加揉盆机构前后的样机进行3组100盆的花苗移栽试验,移栽手爪完整提取基质成功率从84.67%提升到97.67%。该研究将EDEM离散单元分析与物场分析方法结合应用在机构优化设计过程,可以为盆间自动化移栽领域的设备研制与开发提供参考。