Flower-like SnO2 nanopowders prepared by a hydrothermal method were surface modified with palla- dium via impregnation. The crystal structure, morphology, and surface chemistry states of the samples were characterized...Flower-like SnO2 nanopowders prepared by a hydrothermal method were surface modified with palla- dium via impregnation. The crystal structure, morphology, and surface chemistry states of the samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), respectively. The gas sensing performances were also investigated. For a hydrothermal temperature of 220 ℃, flower-like SnO2 nanoparticles consist of nanorods with diameters of 40 nm and lengths of 100 nm. The XPS and XRD results reveal that palladium exists in the Pd0 chemical state but the crystal is too small to be detected. The 0.3 wt% Pd modified SnO2 sensor shows better sensi- tivity, up to 21, for 70 μL/L ethanol gas at an optimal working temperature of 250 ℃. The quick response time (3 s) and fast recovery time (-20 s) are the main characteristics of this sensor.展开更多
Er3+ ions embedded in silica thin films co-doped by SnO2 nanocrystals are fabricated by sol-gel and spin coating methods. Uniformly distributed 4-am SnO2 nanocrystals are fabricated, and the nanocrystals showed tetra...Er3+ ions embedded in silica thin films co-doped by SnO2 nanocrystals are fabricated by sol-gel and spin coating methods. Uniformly distributed 4-am SnO2 nanocrystals are fabricated, and the nanocrystals showed tetragonal rutile crystalline structures confirmed by transmission electron microscope and X-ray diffraction measurements. A strong characteristic emission located at 1.54 〉m from the Era+ ions is iden- tified, and the influences of Sn doping concentrations on photoluminescence properties are systematically evaluated. The emission at 1.54 #m from Era+ ions is enhanced by more than three orders of magnitude, which can be attributed to the effective energy transfer from the defect states of SnO2 nanocrystals to nearby Er3+ ions, as revealed by the selective excitation experiments.展开更多
基金the project sponsored by the NaturalScience Fund of Shandong Province(No.ZR2012EML07)
文摘Flower-like SnO2 nanopowders prepared by a hydrothermal method were surface modified with palla- dium via impregnation. The crystal structure, morphology, and surface chemistry states of the samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), respectively. The gas sensing performances were also investigated. For a hydrothermal temperature of 220 ℃, flower-like SnO2 nanoparticles consist of nanorods with diameters of 40 nm and lengths of 100 nm. The XPS and XRD results reveal that palladium exists in the Pd0 chemical state but the crystal is too small to be detected. The 0.3 wt% Pd modified SnO2 sensor shows better sensi- tivity, up to 21, for 70 μL/L ethanol gas at an optimal working temperature of 250 ℃. The quick response time (3 s) and fast recovery time (-20 s) are the main characteristics of this sensor.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK2010010)the "333"Projectthe Fundamental Research Funds for the Central Universities (Nos. 1112021001 and 1116021003)
文摘Er3+ ions embedded in silica thin films co-doped by SnO2 nanocrystals are fabricated by sol-gel and spin coating methods. Uniformly distributed 4-am SnO2 nanocrystals are fabricated, and the nanocrystals showed tetragonal rutile crystalline structures confirmed by transmission electron microscope and X-ray diffraction measurements. A strong characteristic emission located at 1.54 〉m from the Era+ ions is iden- tified, and the influences of Sn doping concentrations on photoluminescence properties are systematically evaluated. The emission at 1.54 #m from Era+ ions is enhanced by more than three orders of magnitude, which can be attributed to the effective energy transfer from the defect states of SnO2 nanocrystals to nearby Er3+ ions, as revealed by the selective excitation experiments.