The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical technique...The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical techniques for solving PSE include the following contents: introducing the efficiently normal transformation of the boundary layer, improving the computational accuracy by using a high-order differential scheme near the wall, employing the predictor-corrector and iterative approach to satisfy the important normalization condition, and implementing the stable spatial marching. Since the second mode dominates the growth of the disturbance in high Mach number flows, it is used in the computation. The evolution and characteristics of the boundary layer stability in the high speed flow are demonstrated in the examples. The effects of the nonparallelizm, the compressibility and the cooling wall on the stability are analyzed. And computational results are in good agreement with the relevant data.展开更多
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a...High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.展开更多
Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating ...Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.展开更多
The application of abruptly enlarged flows to adjust the drag of aerodynamic vehicles using machine learning models has not been investigated previously.The process variables(Mach number(M),nozzle pressure ratio(η),a...The application of abruptly enlarged flows to adjust the drag of aerodynamic vehicles using machine learning models has not been investigated previously.The process variables(Mach number(M),nozzle pressure ratio(η),area ratio(α),and length to diameter ratio(γ))were numerically explored to address several aspects of this process,namely base pressure(β)and base pressure with cavity(βcav).In this work,the optimal base pressure is determined using the PCA-BAS-ENN based algorithm to modify the base pressure presetting accuracy,thereby regulating the base drag required for smooth flow of aerodynamic vehicles.Based on the identical dataset,the GA-BP and PSO-BP algorithms are also compared to thePCA-BAS-ENNalgorithm.The data for training and testing the algorithmswas derived using the regression equation developed using the Box-Behnken Design(BBD).The results show that the PCA-BAS-ENN model delivered highly accurate predictions when compared to the other two models.As a result,the advantages of these results are two-fold,providing:(i)a detailed examination of the efficiency of different neural network algorithms in dealing with a genuine aerodynamic problem,and(ii)helpful insights for regulating process variables to improve technological,operational,and financial factors,simultaneously.展开更多
Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer....Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers, the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation (DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown. This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock.展开更多
This paper proposes a new accelerating technique for simulating low speed flows,termed as p Seudo High Speed method(SHS),which uses governing equations and numerical methods of compressible flows.SHS method has advant...This paper proposes a new accelerating technique for simulating low speed flows,termed as p Seudo High Speed method(SHS),which uses governing equations and numerical methods of compressible flows.SHS method has advantages of simple formula,easy manipulation,and only need to modify flux of Euler equations.It can directly employ the existing well-developed schemes of hyperbolic conservation laws.To verify the technique,several numerical experiments are performed,such as:flow past airfoils and flow past a cylinder.Analysis of SHS method and comparisons with some precondition methods are made numerically.All tests show that SHS method can greatly improve the efficiency of compressible method simulating low speed flow fields,which exhibits in accelerating the convergence rate and increasing the accuracy of the numerical results.展开更多
For sudden expansion pipes, experiments were carried 'Out to study the cavitation inception for various enlargement ratios in high speed flows. The flow velocity of the prototype reaches 50 m/s in laboratory. The rel...For sudden expansion pipes, experiments were carried 'Out to study the cavitation inception for various enlargement ratios in high speed flows. The flow velocity of the prototype reaches 50 m/s in laboratory. The relationship between the expansion ratio and the incipient cavitation number is obtained. The scale and velocity effects are revealed. It is shown that Keller's revised formula should be modified to calculate the incipient cavitation number when the forecasted velocity of the flows in the prototype exceeds the experimental velocity.展开更多
The previous methods to measure flow speed by photoacoustic microscopy solely focused on either the transverse or the axial flow component, which did not reflect absolute flow speed. Here, we present absolute flow spe...The previous methods to measure flow speed by photoacoustic microscopy solely focused on either the transverse or the axial flow component, which did not reflect absolute flow speed. Here, we present absolute flow speed maps by combining Doppler bandwidth broadening with volumetric photoacoustic microscopy. Photoacoustic Doppler bandwidth broadening and photoacoustic tomographic images were applied to measure the transverse flow component and the Doppler angle, respectively. Phantom experiments quantitatively demonstrated that ranges of 55° to 90° Doppler angle and 0.5 to 10 mm/s flow speed can be measured. This tomography-assisted method provides the foundation for further measurement in vivo.展开更多
This paper deals with the numerical solution of inviscid compressible flows. The threedimensional Euler equations describing the mentioned problem are presented and solved numerically with the finite volume method. Th...This paper deals with the numerical solution of inviscid compressible flows. The threedimensional Euler equations describing the mentioned problem are presented and solved numerically with the finite volume method. The evaluation of the numerical flux at the interfaces is performed by using the Toro Vazquez-Harten Lax Leer(TV-HLL) scheme. An essential feature of the proposed scheme is to associate two systems of differential equations, called the advection system and the pressure system. It can be implemented with a very simple manner in the standard finite volume Euler and Navier–Stokes codes as extremely simple task. The scheme is applied to some test problems covering a wide spectrum of Mach numbers, including hypersonic, low speed flow and three-dimensional aerodynamics applications.展开更多
文摘The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical techniques for solving PSE include the following contents: introducing the efficiently normal transformation of the boundary layer, improving the computational accuracy by using a high-order differential scheme near the wall, employing the predictor-corrector and iterative approach to satisfy the important normalization condition, and implementing the stable spatial marching. Since the second mode dominates the growth of the disturbance in high Mach number flows, it is used in the computation. The evolution and characteristics of the boundary layer stability in the high speed flow are demonstrated in the examples. The effects of the nonparallelizm, the compressibility and the cooling wall on the stability are analyzed. And computational results are in good agreement with the relevant data.
文摘High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
基金supported by the National Natural Science Foundation of China(Nos.11575273 and 11475239)
文摘Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.
基金This research is supported by the Structures and Materials(S&M)Research Lab of Prince Sultan University.
文摘The application of abruptly enlarged flows to adjust the drag of aerodynamic vehicles using machine learning models has not been investigated previously.The process variables(Mach number(M),nozzle pressure ratio(η),area ratio(α),and length to diameter ratio(γ))were numerically explored to address several aspects of this process,namely base pressure(β)and base pressure with cavity(βcav).In this work,the optimal base pressure is determined using the PCA-BAS-ENN based algorithm to modify the base pressure presetting accuracy,thereby regulating the base drag required for smooth flow of aerodynamic vehicles.Based on the identical dataset,the GA-BP and PSO-BP algorithms are also compared to thePCA-BAS-ENNalgorithm.The data for training and testing the algorithmswas derived using the regression equation developed using the Box-Behnken Design(BBD).The results show that the PCA-BAS-ENN model delivered highly accurate predictions when compared to the other two models.As a result,the advantages of these results are two-fold,providing:(i)a detailed examination of the efficiency of different neural network algorithms in dealing with a genuine aerodynamic problem,and(ii)helpful insights for regulating process variables to improve technological,operational,and financial factors,simultaneously.
基金supported by the National Natural Science Foundation of China(Nos.11472188 and11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers, the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation (DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown. This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock.
文摘This paper proposes a new accelerating technique for simulating low speed flows,termed as p Seudo High Speed method(SHS),which uses governing equations and numerical methods of compressible flows.SHS method has advantages of simple formula,easy manipulation,and only need to modify flux of Euler equations.It can directly employ the existing well-developed schemes of hyperbolic conservation laws.To verify the technique,several numerical experiments are performed,such as:flow past airfoils and flow past a cylinder.Analysis of SHS method and comparisons with some precondition methods are made numerically.All tests show that SHS method can greatly improve the efficiency of compressible method simulating low speed flow fields,which exhibits in accelerating the convergence rate and increasing the accuracy of the numerical results.
基金supported by the National Key Basic Research and Development Program of China (973 Program,Grant No.2007CB714105)the National Science and Technology Pillar Program of China (Grant No. 2008BAB29B04)+1 种基金the Science Foundation of Ministry of Education of China (Grant No.2008108111)the Program for New Century Excellent Talents in University (Grant No.NCET-08-0378)
文摘For sudden expansion pipes, experiments were carried 'Out to study the cavitation inception for various enlargement ratios in high speed flows. The flow velocity of the prototype reaches 50 m/s in laboratory. The relationship between the expansion ratio and the incipient cavitation number is obtained. The scale and velocity effects are revealed. It is shown that Keller's revised formula should be modified to calculate the incipient cavitation number when the forecasted velocity of the flows in the prototype exceeds the experimental velocity.
基金supported by the National Natural Science Foundation of China (Nos. 61822505,11774101,61627827,and 81630046)the Science and Technology Planning Project of Guangdong Province,China(No. 2015B020233016)+2 种基金the China Postdoctoral Science Foundation (No. 2019M652943)the Natural Science Foundation of Guangdong Province,China(No. 2019A1515011399)the Science and Technology Program of Guangzhou (No. 2019050001)
文摘The previous methods to measure flow speed by photoacoustic microscopy solely focused on either the transverse or the axial flow component, which did not reflect absolute flow speed. Here, we present absolute flow speed maps by combining Doppler bandwidth broadening with volumetric photoacoustic microscopy. Photoacoustic Doppler bandwidth broadening and photoacoustic tomographic images were applied to measure the transverse flow component and the Doppler angle, respectively. Phantom experiments quantitatively demonstrated that ranges of 55° to 90° Doppler angle and 0.5 to 10 mm/s flow speed can be measured. This tomography-assisted method provides the foundation for further measurement in vivo.
文摘This paper deals with the numerical solution of inviscid compressible flows. The threedimensional Euler equations describing the mentioned problem are presented and solved numerically with the finite volume method. The evaluation of the numerical flux at the interfaces is performed by using the Toro Vazquez-Harten Lax Leer(TV-HLL) scheme. An essential feature of the proposed scheme is to associate two systems of differential equations, called the advection system and the pressure system. It can be implemented with a very simple manner in the standard finite volume Euler and Navier–Stokes codes as extremely simple task. The scheme is applied to some test problems covering a wide spectrum of Mach numbers, including hypersonic, low speed flow and three-dimensional aerodynamics applications.