期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
BEHAVIOR OF FLOW STRESS OF ALUMINUM SHEETS USED FOR PRESSURE CAN DURING COMPRESSION AT ELEVATED TEMPERATURE 被引量:9
1
作者 G.S. Fu W.Z. Chen K. W. Qian 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期756-762,共7页
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynam... The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality. 展开更多
关键词 Al sheets used for can melt-treatment plastic deformation at elevatedtemperature flow stress hot deformation activation energy
下载PDF
A FLOW STRESS MODEL FOR AZ61 MAGNESIUM ALLOY 被引量:9
2
作者 H.T.Zhou X.Q.Zeng +1 位作者 Q.D Wang W.J.Ding State Key Laboratory of Metal Matrix Composite,Shanghai Jiaotong University,Shanghai 200030,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第2期155-160,共6页
The flow stress behaviors of AZ61 alloy has been investigated at temperature rangefrom 523 to 673K with the strain rates of 0.001-1s^(-1). It is found that the averageactivation energy, strain rate sensitive exponent ... The flow stress behaviors of AZ61 alloy has been investigated at temperature rangefrom 523 to 673K with the strain rates of 0.001-1s^(-1). It is found that the averageactivation energy, strain rate sensitive exponent and stress exponent are different atvarious deformation conditions changing from 143.6 to 176.3kJ/mol, 0.125 to 0.167and 6 to 8 respectively. A flow stress model for AZ61 alloy is derived by analyzingthe stress data based on hot compression test. It is demonstrated that the flow stressmodel including strain hardening exponent and strain softening exponent is suitableto predicate the flow stress. The prediction of the flow stress of AZ61 alloy has shownto be good agreement with the test data. The maximum differences of the peak stressescalculated by the model and obtained by experiment is less than 8%. 展开更多
关键词 magnesium alloy flow stress model hot deformation straion softening
下载PDF
Size effects on flow stress of C3602 in cylinder compression with different lubricants 被引量:3
3
作者 GONG Feng GUO Bin ZHOU Jian SHAN Debin 《Rare Metals》 SCIE EI CAS CSCD 2009年第5期528-532,共5页
Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 35... Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 350℃ for 1 h and 700℃ for 3 h in nitrogen atmosphere, respectively. The initial diameters of the specimens were varied from 5 to 1 mm with a height-to-diameter ratio h0/D0 = 1.5. Cylinder compression was carried out in the lubrication condition with talc powder, without lubricant, with petroleum jelly, and with vegetable oil. The experiment was carried out at room temperature on a universal testing machine INSTRON 5569 with a strain rate of ε = 0.0025 A. The results show that with the same lubricant, the yield strength decreases with a decrease in specimen size for the specimens annealed at 350℃ for 1 b; however, it increases with a decrease in specimen size for the specimens annealed at 700℃ for 3 h. The yield strength decreases with an increase in grain size. The influences of lubricants on yield strength become larger with miniaturization of the specimens. 展开更多
关键词 MICROFORMING size effects cylinder compression flow stress LUBRICANT
下载PDF
Effects of casting process on microstructures and flow stress behavior of Mg-9Gd-3Y-1.5Zn-0.8Zr semi-continuous casting billets 被引量:3
4
作者 Xuan liu Qichi Le +3 位作者 Zhiqiang Zhang Lei Bao Zhengxing Fan Jianzhong Cui 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第4期342-348,共7页
Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.Th... Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and flow stress behavior of the billets.The billets with the specific casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity. 展开更多
关键词 Mg-Gd-Y-Zn-Zr Semi-continuous casting MICROSTRUCTURES Flow stress behavior
下载PDF
PREDICTION OF FLOW STRESS OF HIGH-SPEED STEEL DURING HOT DEFORMATION BY USING BP ARTIFICIAL NEURAL NETWORK 被引量:2
5
作者 J. T. Liu H.B. Chang +1 位作者 R.H. Wu T. Y. Hsu(Xu Zuyao) and X.R. Ruan( 1)Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China 2)School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期394-400,共7页
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃... The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy. 展开更多
关键词 T1 high-speed steel flow stress prediction of flow stress back propagation (BP) artificial neural network (ANN)
下载PDF
Flow stress equation for multipass hot-rolling of aluminum alloys 被引量:7
6
作者 ZHANG Hui,PENG Da shu,YANG Li bin,MENG Li ping (Department of Materials Science and Engineering, Central South University, Changsha 410083, China) 《Journal of Central South University of Technology》 2001年第1期13-17,共5页
A series of simple axisymmetric compression tests were carried out on the computer servo controlled Gleeble 1 500 machine when strain rates ranged between 0.05 25 s -1 and deformation temperature 300 500 ℃. The resul... A series of simple axisymmetric compression tests were carried out on the computer servo controlled Gleeble 1 500 machine when strain rates ranged between 0.05 25 s -1 and deformation temperature 300 500 ℃. The results show that flow stress is related to the Zener Hollonom parameter Z and strain, as well as the static recrystallization fraction between passes during multipass hot deformation of 5182 aluminum alloy. Hence, a modified exponential flow stress equation was presented by considering the values of ln A and β as functions of strain, and by using the uniform softening method and incorporating the static recrystallization fraction between passes to consider the effects of residual strain during multipass hot rolling of 5182 aluminum alloy. The validity of the equation was examined by a typical non isothermal multipass deformation test. 展开更多
关键词 aluminum alloy multipass hot rolling flow stress equation
下载PDF
Microstructure and Flow Stress of Mg-12Gd-3Y-0.5Zr Magnesium Alloy 被引量:2
7
作者 马少杰 LIU Ying +1 位作者 DONG Xuehua 张新平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期172-177,共6页
The microstructure and flow stress of the Mg-12Gd-3Y-0.5Zr magnesium alloy was investigated by compression test at temperatures ranging from 350 to 500 ~C and the strain rates ranging from 0.01 to 20 s-1. The flow str... The microstructure and flow stress of the Mg-12Gd-3Y-0.5Zr magnesium alloy was investigated by compression test at temperatures ranging from 350 to 500 ~C and the strain rates ranging from 0.01 to 20 s-1. The flow stress of the magnesium alloy increased with strain rate and decreased with deformation temperature. Flow stress can be expressed in terms of the Zener-Hollomon parameter Z, which describes the combined influence of the strain rate and temperature using an Arrhenius function.The values of the deformation activation energy were estimated to be 245.9 and 171.5 kJ/mol at deformation temperatures below 400 ℃ and above 400 ℃, respectively. Two constitutive equations were developed to quantify the effect of the deformation conditions on the flow stress of the magnesium alloy. The effects of deformation temperature and strain rate on the microstriucture of the magnesium alloy were also examined and quantified by measuring the volume fraction of dYnahaically recrystallized grain Xd. Xd increased with increasing of deformation temperature. When the deformation temperature was below 475 ℃, X4 decreased with strain rate until it reached 0.15 s-1, then it increased again. When the deformation temperature was above 475 ℃, X4 increased with strain rate. 展开更多
关键词 magnesium alloy flow stress hot compression dynamic recrystallization
下载PDF
Development of Flow Stress of AISI H13 Die Steel in Hard Machining 被引量:2
8
作者 闫洪 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期187-190,共4页
An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stre... An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stress in this paper. AISI H13 die steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with experimental data. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response ofAISl H13 die steel with variation of the initial workpiece hardness in hard machining. 展开更多
关键词 flow stress hard machining finite element modeling AISI H13 die steel
下载PDF
Research on flow stress of spray formed 70Si30Al alloy under hot compression deformation 被引量:2
9
作者 WEI Yanguang XIONG Baiqing ZHANG Yong'an LIU Hongwei ZHU Baohong WANG feng 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期665-670,共6页
The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation tem... The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the swain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation. 展开更多
关键词 70Si30Al alloy spray forming flow stress hot compression An'henius equation
下载PDF
High Temperature Flow Stress Prediction of Nano-Al_2O_3/Cu Composite Using an Artificial Neural Network 被引量:1
10
作者 GAO Jian-xin XU Xiao-feng +3 位作者 SONG Ke-xing LI Pei-quan GUO Xiu-hua LIU Rui-hua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期36-40,共5页
Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high ther... Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. The nano-Al2O3/Cu composite was produced by internal oxidation. The microstructures of the composite were analyzed by the TEM and its hot deformation behavior was investigated by means of continuous compression tests performed on a Gleeble 1500 thermo-simulator. Making use of the modified algorithm-Levenberg-Marquardt (L-M) algorithm BP neural network, a model for predicting the flow stresses during hot deformation was set up on the base of the experimental data. Results show that the microstructures of the composite are characterized by uniform distribution of nano-Al2O3 particles in Cu-matrix. The sliding of dislocations is the main deformation mechanism. The dynamic recovery is the main softening mode with the flow stress decreasing gently from 500℃ to 850 ~C. The recrystallization of Cu-matrix can be retarded late into as high as 850 ℃, when it happens only partially. The well-trained BP neural network model can accurately describe the influence of the temperature, strain rate, and true strain on the flow stresses, therefore, it can precisely predict the flow stresses of the composite under given deforming conditions and provide a new way to optimize hot deforming process parameters. 展开更多
关键词 Al2O3/Cu composite flow stress neural network hot deformation
下载PDF
Research on flow stress in ferrite deformation of a Ti-IF steel 被引量:1
11
作者 Guang Xu Chushao Xu +1 位作者 Jiarong Zhao Xianjun Liu 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期34-36,共3页
The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carded out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were... The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carded out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were analyzed. New flow stress models suitable to ferrite warm forming of Ti-IF steel were given on the basis of analyzing the influence of deformation technology parameters on the flow stress. 展开更多
关键词 ULC Ti-IF steel ferrite deformation flow stress MODEL
下载PDF
Prediction of flow stresses at high temperatures with artificial neural networks 被引量:1
12
作者 汪凌云 郑廷顺 +1 位作者 刘雪峰 黄光杰 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期213-216,共4页
On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate an... On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%. [ 展开更多
关键词 Al Li alloy high temperature plastic deformation flow stress neural networks
下载PDF
Flow Stress Behavior and Processing Map of Al-Cu-Mg-Ag Alloy during Hot Compression 被引量:1
13
作者 杨胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期694-698,共5页
The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573-773 K and strain rate range of 0.001-1 s^-1 on a Gleeble 1500 D thermal mechanical simulator.... The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573-773 K and strain rate range of 0.001-1 s^-1 on a Gleeble 1500 D thermal mechanical simulator. The results show the flow stress of Al-Cu-Mg-Ag alloy increases with strain rate and decreases after a peak value, indicating dynamic recovery and recrystallization. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate and temperature, the flow stress equation is estimated to illustrate the relation of strain rate and stress and temperature during high temperature deformation process. The processing maps exhibit two domains as optimum fields for hot deformation at different strains, including the high strain rate domain in 623-773 K and the low strain rate domain in 573-673 K. 展开更多
关键词 Al-Cu-Mg-Ag alloy flow stress behavior constitutive equation processing map
下载PDF
Influence of stress path change on the resistance to plastic deformation of cold rolled sheets 被引量:1
14
作者 Pavel Huml 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期521-526,共6页
Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strip... Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening. 展开更多
关键词 cold working plastic deformation strain path stress path loading mode flow stress yield stress strain hardening
下载PDF
Edge Structure of Reynolds Stress and Poloidal Flow on the HL-1M Tokamak 被引量:6
15
作者 洪文玉 王恩耀 +2 位作者 曹建勇 李强 刘达致 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第3期791-796,共6页
The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-ar... The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-array of Mach/Langmuir probes. In the experiments of Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam injection (SMBI), Multi-shot Pellet Injection (MPI) and Neutral Beam injection (NBI), the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The results indicate that a sheared poloidal flow can be generated in Tokamak plasma due to radially varying Reynolds stress. 展开更多
关键词 LHCD Edge Structure of Reynolds stress and Poloidal Flow on the HL-1M Tokamak HL
下载PDF
Measurement of surface shear stress vector distribution using shear-sensitive liquid crystal coatings 被引量:5
16
作者 Ji-Song Zhao Peter Scholz Liang-Xian Gu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1261-1270,共10页
The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particu... The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found. Spatial wall shear stress distributions of several typical flows are obtained using this technique, including wall-jet flow, vortex flow generated by a delta wing and junction flow behind a thin cylinder, although the magnitudes are not fully calibrated. The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used. 展开更多
关键词 Shear-sensitive liquid crystal (SSLC) Surfaceshear stress measurement. Wall-jet. Vortex generator- Junc-tion flow
下载PDF
A NEURAL NETWORK-BASED MODEL FOR PREDICTION OF HOT-ROLLED AUSTENITE GRAIN SIZE AND FLOW STRESS IN MICROALLOY STEEL
17
作者 J. T.Niu,L.J.Sun and P.Karjalainen 1) Harbin Institute of Technology, Harbin 150001, China 2) University of Oulu, FIN-90571, Oulu, Finland 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期521-530,共10页
For the great significance of the prediction of control parameters selected for hot-rolling and the evaluation of hot-rolling quality for the analysis of prod uction problems and production management, the selection o... For the great significance of the prediction of control parameters selected for hot-rolling and the evaluation of hot-rolling quality for the analysis of prod uction problems and production management, the selection of hot-rolling control parameters was studied for microalloy steel by following the neural network principle. An experimental scheme was first worked out for acquisition of sample data, in which a gleeble-1500 thermal simolator was used to obtain rolling temperature, strain, stain rate, and stress-strain curves. And consequently the aust enite grain sizes was obtained through microscopic observation. The experimental data was then processed through regression. By using the training network of BP algorithm, the mapping relationship between the hotrooling control parameters (rolling temperature, stain, and strain rate) and the microstructural paramete rs (austenite grain in size and flow stress) of microalloy steel was function appro ached for the establishment of a neural network-based model of the austeuite grain size and flow stress of microalloy steel. From the results of estimation made with the neural network based model, the hot-rolling control parameters can be effectively predicted. 展开更多
关键词 microalloy steel controlled rolling austenite grain size flow stress neural network BP algorithm
下载PDF
Effects of specimen size on flow stress of micro rod specimen
18
作者 王春举 郭斌 +1 位作者 单德彬 孙立宁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期511-515,共5页
With the miniaturization of parts,size effects occur in the micro-forming processes.To investigate the effects of the specimen size on the flow stress,a series of upsetting deformation experiments were carried out at ... With the miniaturization of parts,size effects occur in the micro-forming processes.To investigate the effects of the specimen size on the flow stress,a series of upsetting deformation experiments were carried out at room temperature for specimens with different diameters.And the grain size of billets was changed by anneal processes to analyze the grain size effects on the size dependence of flow stress.The deviation of stress was observed.The results show that the flow stress decreases with decreasing billet dimensions.As the dislocation accumulation in free surface layer is slight,the reduction degree of flow stress becomes larger when the plastic deformation goes on.The flow stress is enlarged by grain size,which can be analyzed by the grain boundary length per area.The deviation increases with decreasing specimen size.This can be explained by the effects of grain orientation stochastic distribution according to the Schmid law.As a result,the micro-forming process must be considered from the viewpoint of polycrystalline structure,and the single grains of micro-billet dominate the deformation. 展开更多
关键词 MICRO-FORMING size effects free surface effects deviation flow stress
下载PDF
Flow stress model considering the transformation-induced plasticity effect and the inelastic strain recovery behavior
19
作者 Hai-yan Yu Li Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第2期185-191,共7页
On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recov... On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail. 展开更多
关键词 flow stress transformation-induced plasticity inelastic strain elastic modulus
下载PDF
Novel extended C-m models of flow stress for accurate mechanical and metallurgical calculations and comparison with traditional flow models
20
作者 Man Soo Joun Mohd Kaswandee Razali +2 位作者 Jae Dong Yoo Min Cheol Kim Jeong Muk Choi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2516-2533,共18页
Here,we developed novel extended piecewise bilinear power law(C-m)models to describe flow stresses under broad ranges of strain,strain rate,and temperature for mechanical and metallurgical calculations during metal fo... Here,we developed novel extended piecewise bilinear power law(C-m)models to describe flow stresses under broad ranges of strain,strain rate,and temperature for mechanical and metallurgical calculations during metal forming at elevated temperatures.The traditional C-m model is improved upon by formulating the material parameters C and m,defined at sample strains and temperatures as functions of the strain rate.The coefficients are described as a linear combination of the basis functions defined in piecewise patches of the sample strain and temperature domain.A comparison with traditional closed-form function flow models revealed that our approach using the extended piecewise bilinear C-m model is superior in terms of accuracy,ease of use,and adaptability;additionally,the extended C-m model was applicable to numerical analysis of mechanical,metallurgical,and microstructural problems.Moreover,metallurgy-related values can be calculated directly from the flow stress information.Although the proposed model was developed for materials at elevated temperatures,it can be applied over a broad temperature range. 展开更多
关键词 Flow stress Power law model Piecewise bilinear function Numerical analysis Microstructural prediction Peak strain
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部