Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was ana...Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was analyzed to obtain the pressure statistics, including the wall-pressure root-mean square, skewness and flatness factors, which show the wall pressure distribution was not Gaussian. The profile of the auto-power spectral density and the contour of the streamwise wavenumber-frequency spectral density of wall-pressure were plotted. The "convection ridge" can be observed clearly and the convection velocity can be calculated from the location of the convection peak.展开更多
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses si...In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.展开更多
It is widely accepted that in a turbulent boundary layer (TBL) with adverse pressure gradient (APG) an outer peak usually appears in the profile of streamwise Reynolds stress. However, the effect of APG on this ou...It is widely accepted that in a turbulent boundary layer (TBL) with adverse pressure gradient (APG) an outer peak usually appears in the profile of streamwise Reynolds stress. However, the effect of APG on this outer peak is not clearly understood. In this paper, the effect of APG is analysed using the numerical and experimental results in the literature. Because the effect of upstream flow is inherent in the TBL, we first analyse this effect in TBLs with zero pressure gradient on flat plates. Under the individual effect of upstream flow, an outer peak already appears in the profile of streamwise Reynolds stress when the TBL continues developing in the streamwise direction. The APG accelerates the appearance of the outer peak, instead of being a trigger.展开更多
By a suitable manipulation of hydrogen bubble generation,some new results were obtained: (1)The long-streaks arc generated along the interfaces between low and high-speed streaks.The long-streaks are generally stretch...By a suitable manipulation of hydrogen bubble generation,some new results were obtained: (1)The long-streaks arc generated along the interfaces between low and high-speed streaks.The long-streaks are generally stretching and are moving faster than its neighboring high-speed streaks.The hydrogen bubbles in long-streaks have longer life.(2)The stream-wise vortices are also generated along the interfaces.展开更多
One of the more severe fluctuating pressure environments encountered in supersonic or hypersonic flows is the shock wave oscillation driven by interaction of a shock wave with boundary layer. The high intensity oscill...One of the more severe fluctuating pressure environments encountered in supersonic or hypersonic flows is the shock wave oscillation driven by interaction of a shock wave with boundary layer. The high intensity oscillating shock wave may induce structure resonance of a high speed vehicle. The research for the shock oscillation used to adopt empirical or semiempirical methods because the phenomenon is very complex. In this paper a theoretical solution on shock oscillating frequency due to turbulent shear layer fluctuations has been obtained from basic conservation equations. Moreover, we have attained the regularity of the frequency of oscillating shock varying with incoming flow Much numbers M and turning angle . The calculating results indicate excellent agreement with measurements. This paper has supplied a valuable analytical method to study aeroelastic problems produced by shock wave oscillation.展开更多
A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be ...A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).展开更多
In order to investigate the aerodynamics of a high speed low pressure turbine works in high Mach number and low Reynold number environment,the effect of freestream turbulence(FST)on the boundary layer development on t...In order to investigate the aerodynamics of a high speed low pressure turbine works in high Mach number and low Reynold number environment,the effect of freestream turbulence(FST)on the boundary layer development on the high speed low pressure turbine under different Reynolds numbers(Re)is numerically investigated.Large eddy simulation is adopted here with a subgrid scale model of Wall Adapting Local Eddy viscosity(WALE).Cases with Re ranging from 100000 to 400000 under an exit Mach number(Ma)of 0.87 have been considered at low and high FST levels.A low Ma case(0.17)under very low Re has also been studied under both low and high FST.It is found that higher Re or FST level leads to earlier transition.Re has a greater effect than FST on the development of boundary layer.The effect of FST on the boundary layer depends on the Re.The boundary layer development shows totally different behaviors under different Ma.A separation bubble could be formed under low Ma while no attachment could be detected under high Ma.The FST has a stronger effect on the separated boundary layer under low Ma,which could eliminate the separation in the present study.For all the cases under low FST,the Kelvin-Helmholtz instability is the dominate mechanism in the transition process.For the low Ma case with high FST,the streamwise streaks play a dominant role in the transition process.For the high Ma cases with high FST,both the streamwise streaks and Kelvin-Helmholtz instability work in the transition process.The streamwise streaks play a more important role when the Re increased.展开更多
This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of...This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5x10^7/m.The separated flow was generated using finite span forward facing steps.An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make mul- ti-channel measurements of the fluctuating surface heat trtansfer within the separated flow.Conditional sampling ana- lysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness.The compression waves con- verge into a single leading shock beyond the boundary layer.The shock structure is unsteady and undergoes large-scale motion in the streamwise direction.The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave.There exists a wide band of frequency of oscillations of the shock system.Most of the frequencies are in the range of 1-3 kHz.The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave.This inter mittent phenomenon is considered as the consequence of the large-scale shock system oscillations.Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed.展开更多
At kilometer and sub-kilometer resolutions,known as the numerical gray zone for boundary layer turbulence,the atmospheric boundary layer turbulence becomes partially resolved and partially subgrid-scale(SGS) in a nume...At kilometer and sub-kilometer resolutions,known as the numerical gray zone for boundary layer turbulence,the atmospheric boundary layer turbulence becomes partially resolved and partially subgrid-scale(SGS) in a numerical model,thus requiring scale-adaptive turbulence schemes.Such schemes are often built by modifying the existing parameterizations,either the planetary boundary layer(PBL) schemes or the large-eddy simulation(LES) closures,to produce the right SGS turbulent fluxes at gray zone resolutions.However,the underlying forcings responsible for the changes in the vertical turbulent fluxes are largely ignored in these approaches.This study follows the original approach of Wyngaard(2004) and analyzes the turbulent buoyancy and momentum flux budgets,to gain a better understanding of the variations of flux forcings at gray zone resolutions.The investigation focuses on the pressure covariance term,which is one of the most dominant terms in the budget equations.By using the coarse-grained LES of a dry convective boundary layer(CBL) case as reference,two widely-used pressure covariance models are evaluated and optimized across the gray zone resolution range.The optimized linear model is further evaluated a priori against another dry CBL case with a different bulk stability,and a shallow-cumulus-topped boundary layer case.The model applies well to both cases,and notably shows good performance for the cloud layer.Based on the analysis of the flux forcings and the optimized pressure model,a scale-adaptive turbulence model for the gray zone is derived from the steady-state flux budgets.展开更多
特高压(ultra high voltage,UHV)换流站阀厅的金属屋面系统在风荷载作用下易发生屋面表层风揭事故。为深入探讨该类建筑屋面的风压极值特性,基于风洞试验分别探讨了大气边界层(atmospheric-boundary-layer,ABL)风、壁面射流、均匀湍流...特高压(ultra high voltage,UHV)换流站阀厅的金属屋面系统在风荷载作用下易发生屋面表层风揭事故。为深入探讨该类建筑屋面的风压极值特性,基于风洞试验分别探讨了大气边界层(atmospheric-boundary-layer,ABL)风、壁面射流、均匀湍流三种风场作用下的屋面风压特性,比较了平均风剖面、风速、风向、湍流强度等因素对屋面风压的影响。结果表明:阀厅屋盖迎风前缘负风压最大,且控制风向角在45°左右;壁面射流风场下平均风压系数与脉动风压系数均超过大气边界层风场的结果;风速对阀厅屋盖的负风压系数均值和极值影响较小,而湍流度对风压系数的极值影响较大;大气边界风场时,JGJ/T 481—2019《屋盖结构风荷载标准》的最不利风压系数建议值偏于安全;而在壁面射流风场下,阀厅屋盖全风向最不利风压系数在所有区域都大于JGJ/T 481—2019的建议值,设计中应加以重视。展开更多
An experimental study on TBL (turbulent boundary layer) pressure fluctuation frequeny spectrum of a revolution body is presented. With the measured results, a relation of convective frequency fo of the models is...An experimental study on TBL (turbulent boundary layer) pressure fluctuation frequeny spectrum of a revolution body is presented. With the measured results, a relation of convective frequency fo of the models is obtained. Relations of turbuleat wall-pressure fluctuation spectrum in transition region and development region to frequency and speed are obtained also展开更多
A unified theory for calculating the noise radiation of an infinite elastic plate excited by the turbulent boundary layer pressure fluctuations is presented . Using the wave number frequency transfer function to desri...A unified theory for calculating the noise radiation of an infinite elastic plate excited by the turbulent boundary layer pressure fluctuations is presented . Using the wave number frequency transfer function to desribe the whole system , consisting of the plate and the liquid loading, a general expression of the cross spectrum was derived. It is an integral in the complex wave number plane and leads to a sum of the residues at the poles of two types. One pole introduced by the convective ridge of the pressure fluctuations yields a direct transfer component , which is an evanescent wave in liquid because the pole lies in the high wave number region . The other poles introduced by the transfer function of structure produce the radiation field components with the resonance modes of a liquid loaded plate. The pole positions and their residues can be computed approximately by use of the Resonance Scattering Theory . For the case of hydrodynamic noise, where the range of the frequency-thickness product of interest is relatively low , the symmetric zero-order mode dominates the noise radiation.展开更多
This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transp...This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...展开更多
By using the idea of resonant triad of the theory of hydrodynamic stability, the effect of pressure gradient on coherent structures in a turbulent boundary layer is investigated. The favorable pressure gradient suppre...By using the idea of resonant triad of the theory of hydrodynamic stability, the effect of pressure gradient on coherent structures in a turbulent boundary layer is investigated. The favorable pressure gradient suppresses the generation of the coherent structure, while the adverse pressure gradient has the opposite effect. The scale, form, as well as the propagation speed of the coherent structures are different from those with zero pressure gradient. The theoretical results are, in general, m agreement with those found from experiments. From the calculated probability density curve of the circulation differences of the nearly streamwise vortex pairs, it is found that the adverse pressure gradient makes the vortex pair more symmetric.展开更多
A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosi...A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosity tensor components is found from experimental re-sults for elementary flow of each kind of shearing flow, and then we can forecast thecomplicated shearing flows more accurately. In this way, the distributional laws of the ed-展开更多
Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce iso...Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce isotropy of turbulence. In order to confirm our previous analysis and to further investigate flow fields in the vicinity of bubbles, we analyze velocity fluctuations on the quadrant space in the streamwise and transverse directions (u′-v′ plane). Here, we focus on two specific Reynolds numbers (at Re≈900 and ≈1410, which are close to the laminar-to-turbulent transition regime) and discuss bubble effects on sweep (u′〉 0, v′〈 0 ) and ejection (u′〈 0, v′〉 0) events as a function of the Reynolds number. We also illustrate velocity fluctuations in the vicinity of an individual bubble and a swarm of bubbles on the u′- v′ coordinates. The results show that a bubble swarm suppresses the velocity fluctuations at Re≈1410.展开更多
The effects of adverse pressure gradient(APG)on Reynolds stresses in turbulent boundary layers(TBLs)with APG were analyzed.The difficulty of this work was attributable to the Reynolds stresses in TBLs with APG under t...The effects of adverse pressure gradient(APG)on Reynolds stresses in turbulent boundary layers(TBLs)with APG were analyzed.The difficulty of this work was attributable to the Reynolds stresses in TBLs with APG under two combined effects,i.e.:effect of upstream flow and effect of APG.The effect of upstream flow is an inherent effect no matter pressure gradient exists or not.The individual effect was analyzed from absolute developments of Reynolds stresses in TBLs with zero pressure gradient(ZPG)firstly.Effect of APG was then analyzed from absolute developments of Reynolds stresses in TBLs with APG.Result showed that,for absolute development of mean streamwise Reynolds stresses,APG accelerated its development in TBL with ZPG;for absolute development of mean normal or shear Reynolds stresses,APG increased their magnitude in the outer part,and decreased their extent of large value region.展开更多
基金The National Natural Science Foundation of China (No10772119)
文摘Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was analyzed to obtain the pressure statistics, including the wall-pressure root-mean square, skewness and flatness factors, which show the wall pressure distribution was not Gaussian. The profile of the auto-power spectral density and the contour of the streamwise wavenumber-frequency spectral density of wall-pressure were plotted. The "convection ridge" can be observed clearly and the convection velocity can be calculated from the location of the convection peak.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos.51309040, 51379033, 51209027, 51309025), Open Research Fund of State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (Grant No.1402), and Fundamental Research Fund for the Central Universities (DMU3132015089).
文摘In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.
基金supported by the Sino-French Project AX-IOOM (Advanced Experiments and Simulations of Complex Flows in Turbomachines)the National Natural Science Foundation of China (51136003, 50976010)the National Basic Research Program of China (2012CB720205)
文摘It is widely accepted that in a turbulent boundary layer (TBL) with adverse pressure gradient (APG) an outer peak usually appears in the profile of streamwise Reynolds stress. However, the effect of APG on this outer peak is not clearly understood. In this paper, the effect of APG is analysed using the numerical and experimental results in the literature. Because the effect of upstream flow is inherent in the TBL, we first analyse this effect in TBLs with zero pressure gradient on flat plates. Under the individual effect of upstream flow, an outer peak already appears in the profile of streamwise Reynolds stress when the TBL continues developing in the streamwise direction. The APG accelerates the appearance of the outer peak, instead of being a trigger.
基金The project is supported by the National Natural Science Foundation of China.
文摘By a suitable manipulation of hydrogen bubble generation,some new results were obtained: (1)The long-streaks arc generated along the interfaces between low and high-speed streaks.The long-streaks are generally stretching and are moving faster than its neighboring high-speed streaks.The hydrogen bubbles in long-streaks have longer life.(2)The stream-wise vortices are also generated along the interfaces.
基金The Project Supported by the National Natural Science Foundation of China
文摘One of the more severe fluctuating pressure environments encountered in supersonic or hypersonic flows is the shock wave oscillation driven by interaction of a shock wave with boundary layer. The high intensity oscillating shock wave may induce structure resonance of a high speed vehicle. The research for the shock oscillation used to adopt empirical or semiempirical methods because the phenomenon is very complex. In this paper a theoretical solution on shock oscillating frequency due to turbulent shear layer fluctuations has been obtained from basic conservation equations. Moreover, we have attained the regularity of the frequency of oscillating shock varying with incoming flow Much numbers M and turning angle . The calculating results indicate excellent agreement with measurements. This paper has supplied a valuable analytical method to study aeroelastic problems produced by shock wave oscillation.
基金Project supported by the National Natural Science Foundation of China(Nos.11472189 and11332007)
文摘A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).
基金supported by the National Science and Technology Major Project of China (No. 2017-Ⅱ-0008-0022,2019-Ⅱ-008-0028)
文摘In order to investigate the aerodynamics of a high speed low pressure turbine works in high Mach number and low Reynold number environment,the effect of freestream turbulence(FST)on the boundary layer development on the high speed low pressure turbine under different Reynolds numbers(Re)is numerically investigated.Large eddy simulation is adopted here with a subgrid scale model of Wall Adapting Local Eddy viscosity(WALE).Cases with Re ranging from 100000 to 400000 under an exit Mach number(Ma)of 0.87 have been considered at low and high FST levels.A low Ma case(0.17)under very low Re has also been studied under both low and high FST.It is found that higher Re or FST level leads to earlier transition.Re has a greater effect than FST on the development of boundary layer.The effect of FST on the boundary layer depends on the Re.The boundary layer development shows totally different behaviors under different Ma.A separation bubble could be formed under low Ma while no attachment could be detected under high Ma.The FST has a stronger effect on the separated boundary layer under low Ma,which could eliminate the separation in the present study.For all the cases under low FST,the Kelvin-Helmholtz instability is the dominate mechanism in the transition process.For the low Ma case with high FST,the streamwise streaks play a dominant role in the transition process.For the high Ma cases with high FST,both the streamwise streaks and Kelvin-Helmholtz instability work in the transition process.The streamwise streaks play a more important role when the Re increased.
基金The project supported by National Natural Science Foundation of China
文摘This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5x10^7/m.The separated flow was generated using finite span forward facing steps.An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make mul- ti-channel measurements of the fluctuating surface heat trtansfer within the separated flow.Conditional sampling ana- lysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness.The compression waves con- verge into a single leading shock beyond the boundary layer.The shock structure is unsteady and undergoes large-scale motion in the streamwise direction.The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave.There exists a wide band of frequency of oscillations of the shock system.Most of the frequencies are in the range of 1-3 kHz.The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave.This inter mittent phenomenon is considered as the consequence of the large-scale shock system oscillations.Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed.
基金Supported by the Joint Funds of the National Natural Science Foundation of China (U2142209)Major Program of the National Natural Science Foundation of China (42192552)。
文摘At kilometer and sub-kilometer resolutions,known as the numerical gray zone for boundary layer turbulence,the atmospheric boundary layer turbulence becomes partially resolved and partially subgrid-scale(SGS) in a numerical model,thus requiring scale-adaptive turbulence schemes.Such schemes are often built by modifying the existing parameterizations,either the planetary boundary layer(PBL) schemes or the large-eddy simulation(LES) closures,to produce the right SGS turbulent fluxes at gray zone resolutions.However,the underlying forcings responsible for the changes in the vertical turbulent fluxes are largely ignored in these approaches.This study follows the original approach of Wyngaard(2004) and analyzes the turbulent buoyancy and momentum flux budgets,to gain a better understanding of the variations of flux forcings at gray zone resolutions.The investigation focuses on the pressure covariance term,which is one of the most dominant terms in the budget equations.By using the coarse-grained LES of a dry convective boundary layer(CBL) case as reference,two widely-used pressure covariance models are evaluated and optimized across the gray zone resolution range.The optimized linear model is further evaluated a priori against another dry CBL case with a different bulk stability,and a shallow-cumulus-topped boundary layer case.The model applies well to both cases,and notably shows good performance for the cloud layer.Based on the analysis of the flux forcings and the optimized pressure model,a scale-adaptive turbulence model for the gray zone is derived from the steady-state flux budgets.
文摘特高压(ultra high voltage,UHV)换流站阀厅的金属屋面系统在风荷载作用下易发生屋面表层风揭事故。为深入探讨该类建筑屋面的风压极值特性,基于风洞试验分别探讨了大气边界层(atmospheric-boundary-layer,ABL)风、壁面射流、均匀湍流三种风场作用下的屋面风压特性,比较了平均风剖面、风速、风向、湍流强度等因素对屋面风压的影响。结果表明:阀厅屋盖迎风前缘负风压最大,且控制风向角在45°左右;壁面射流风场下平均风压系数与脉动风压系数均超过大气边界层风场的结果;风速对阀厅屋盖的负风压系数均值和极值影响较小,而湍流度对风压系数的极值影响较大;大气边界风场时,JGJ/T 481—2019《屋盖结构风荷载标准》的最不利风压系数建议值偏于安全;而在壁面射流风场下,阀厅屋盖全风向最不利风压系数在所有区域都大于JGJ/T 481—2019的建议值,设计中应加以重视。
文摘An experimental study on TBL (turbulent boundary layer) pressure fluctuation frequeny spectrum of a revolution body is presented. With the measured results, a relation of convective frequency fo of the models is obtained. Relations of turbuleat wall-pressure fluctuation spectrum in transition region and development region to frequency and speed are obtained also
文摘A unified theory for calculating the noise radiation of an infinite elastic plate excited by the turbulent boundary layer pressure fluctuations is presented . Using the wave number frequency transfer function to desribe the whole system , consisting of the plate and the liquid loading, a general expression of the cross spectrum was derived. It is an integral in the complex wave number plane and leads to a sum of the residues at the poles of two types. One pole introduced by the convective ridge of the pressure fluctuations yields a direct transfer component , which is an evanescent wave in liquid because the pole lies in the high wave number region . The other poles introduced by the transfer function of structure produce the radiation field components with the resonance modes of a liquid loaded plate. The pole positions and their residues can be computed approximately by use of the Resonance Scattering Theory . For the case of hydrodynamic noise, where the range of the frequency-thickness product of interest is relatively low , the symmetric zero-order mode dominates the noise radiation.
文摘This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...
基金Project supported by the National Natural Science Foundation of China.
文摘By using the idea of resonant triad of the theory of hydrodynamic stability, the effect of pressure gradient on coherent structures in a turbulent boundary layer is investigated. The favorable pressure gradient suppresses the generation of the coherent structure, while the adverse pressure gradient has the opposite effect. The scale, form, as well as the propagation speed of the coherent structures are different from those with zero pressure gradient. The theoretical results are, in general, m agreement with those found from experiments. From the calculated probability density curve of the circulation differences of the nearly streamwise vortex pairs, it is found that the adverse pressure gradient makes the vortex pair more symmetric.
基金Project supported by the National Natural Science Foundation of China.
文摘A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosity tensor components is found from experimental re-sults for elementary flow of each kind of shearing flow, and then we can forecast thecomplicated shearing flows more accurately. In this way, the distributional laws of the ed-
文摘Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce isotropy of turbulence. In order to confirm our previous analysis and to further investigate flow fields in the vicinity of bubbles, we analyze velocity fluctuations on the quadrant space in the streamwise and transverse directions (u′-v′ plane). Here, we focus on two specific Reynolds numbers (at Re≈900 and ≈1410, which are close to the laminar-to-turbulent transition regime) and discuss bubble effects on sweep (u′〉 0, v′〈 0 ) and ejection (u′〈 0, v′〉 0) events as a function of the Reynolds number. We also illustrate velocity fluctuations in the vicinity of an individual bubble and a swarm of bubbles on the u′- v′ coordinates. The results show that a bubble swarm suppresses the velocity fluctuations at Re≈1410.
基金Natural Science Foundation of Shanghai(15ZR1422500)Initiative Projects of Shanghai Jiao Tong University Young Teachers(AF4130024)
文摘The effects of adverse pressure gradient(APG)on Reynolds stresses in turbulent boundary layers(TBLs)with APG were analyzed.The difficulty of this work was attributable to the Reynolds stresses in TBLs with APG under two combined effects,i.e.:effect of upstream flow and effect of APG.The effect of upstream flow is an inherent effect no matter pressure gradient exists or not.The individual effect was analyzed from absolute developments of Reynolds stresses in TBLs with zero pressure gradient(ZPG)firstly.Effect of APG was then analyzed from absolute developments of Reynolds stresses in TBLs with APG.Result showed that,for absolute development of mean streamwise Reynolds stresses,APG accelerated its development in TBL with ZPG;for absolute development of mean normal or shear Reynolds stresses,APG increased their magnitude in the outer part,and decreased their extent of large value region.