Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), ...Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising.展开更多
A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study.The flue gas containing 200 mg·m^-3NO,1000-4000 mg·m^-3SO(2,)3%-9%O(2)and 10%-20%CO(2)was first oxidized ...A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study.The flue gas containing 200 mg·m^-3NO,1000-4000 mg·m^-3SO(2,)3%-9%O(2)and 10%-20%CO(2)was first oxidized b(y)O3 and then absorbed by ammonia in a bubbling reactor.Increasing the ammonia concentration or the SO2 content in flue gas can promote the absorption of NOx and extend the effective absorption time.On the contrary,both increasing the absorbent temperature or the O(2)content shorten the effective absorption time of NO((x.))The change of solution pH had substantial influence on NOx absorption.In the presence of CO(2)the NOx removal efficiency reached 89.2%when the absorbent temperature was raised to 60℃and the effective absorption time can be maintained for 8 h,which attribute to the buffering effect in the absorbent.Besides,both the addition of Na(2)S2 O3 and urea can promote the NOx removal efficiency when the absorbent temperature is 25℃and the addition of Na(2)S2 O3 had achieved better results.The advantage of adding Na(2)S2 O3 became less evident at higher absorbent temperature and coexistence of CO(2.)In all experiments,SO(2)removal efficiency was always above 99%,and it was basically not affected by the above factors.展开更多
In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and mor...In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.展开更多
To control contamination of flue gas emission NOx, the author mixcd method of preparing new magnesia base catalyst and researched on denitrificating fine gas by directness catalytic decomposition. Usually removal rate...To control contamination of flue gas emission NOx, the author mixcd method of preparing new magnesia base catalyst and researched on denitrificating fine gas by directness catalytic decomposition. Usually removal rate of NO is regarded on the main evaluation criteria. The author analyzed calcination temperature of catalyzer manufacturing process, the temperature of flue gas desorption tower, bed height and efficiency denitrification of NO concentration. And discussed the result of both denitrate lore-and-aft of FT-IR and XRD. The experiment indicates that magnesia base catalyst is available to directness catalytic decomposition denitrificate flue gas. Through denitrification rate is from 85% to 95%. The ingredient of magnesia base catalyst is made from magnesia, firming agent, addition agent. Height denitration bed was 4 cm- 5 cm, deuitration reaction temperature is 130℃-170℃, through the analyses above, presumed that magnesia base catalyst exist activating of vice, and analyzed this vice preliminarily.展开更多
Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influenc...Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influencing factors for simul- taneous removal of SO2 and NO, and removal mechanism of SO2 and NO were studied. After the optimal values of concentration of O2 in flue gas, the relative humidity of flue gas and the irradiation time in the photocatalysis reactor were used, the efficiencies of removal for SO2 and NO can be achieved above 98% and about 67%, respectively. According to the results of removal products analysis, the re- moval mechanism of SO2 and NO based on TiO2 photocatlysis can be put forward, namely, SO2 was oxidized to SO3 partly, the bulk of NO was oxidized to NO2, and both were removed by resorbing finally.展开更多
The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fl...The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed(CFB).The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification.Removal efficiencies of 95.5%for SO2 and 64.8%for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods.The results in- dicated that more nitrogen species appeared in the spent absorbent except sulfur species.A scanning electron microscope(SEM)and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,oxidizing highly reactive absorbent and spent absorbent.The simultaneous removal mechanism of SO2 and NO based on this absorbent was pro- posed according to the experimental results.展开更多
With the vigorous development of China's iron and steel industry and the introduction of ultra-low emission policies,the emission of pollutants such as SO_(2)and NO x has received unprecedented attention.Consideri...With the vigorous development of China's iron and steel industry and the introduction of ultra-low emission policies,the emission of pollutants such as SO_(2)and NO x has received unprecedented attention.Considering the increase of the proportion of semi-dry desulfurization technology in the desulfurization process,several semi-dry desulphurization technologies such as flue gas circulating fluidized bed(CFB),dense flow absorber(DFA)and spray drying absorption(SDA)are briefly summarized.Moreover,a method for simultaneous treatment of SO_(2)and NOx in sintering/pelletizing flue gas by O_(3)oxidation combined with semidry method is introduced.Meantime,the effects of key parameters such as O_(3)/NO molar ratio,Ca SO_(3),SO_(2),reaction temperature,Ca/(S+2 N)molar ratio,droplet size and approach to adiabatic saturation temperature(AAST)on denitrification and desulfurization are analyzed.Furthermore,the reaction mechanism of denitrification and desulfurization is further elucidated.Finally,the advantages and development prospects of the new technology are proposed.展开更多
An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was car...An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was carried out using this absorbent in a flue gas circulating fluidized bed (CFB). The highest simultaneous removal efficiency, 94.5% of SO2 and 64.2% of NO, was achieved under the optimal experiment conditions. Scanning Electron Microscope (SEM) and Accessory X-ray Energy Spectrometer (EDX) were used to observe the surface characteristics of fly ash, lime, "Oxygen-enriched" highly reactive absorbent and the spent absorbent. An ion chromatograph (IC) and chemical analysis methods were used to determine the contents of sulfate, sulfite, nitrate and nitrite in the spent absorbents, the results showed that sulfate and nitrite were the main products for desulfurization and denitrification respectively. The mechanism of removing SO2 and NO simultaneously was proposed based on the analysis results of SEM, EDX, IC and the chemical analysis methods.展开更多
A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfe...A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.展开更多
The denitrification rate of the cross-flow activated coke flue gas purification facility varies with operational parameters. According to the simulated experiments, the denitrification rate with the height drop of the...The denitrification rate of the cross-flow activated coke flue gas purification facility varies with operational parameters. According to the simulated experiments, the denitrification rate with the height drop of the denitrification unit experiences 100%, rapid decreasing, and gradual rising to the equilibrium. According to the correlation analysis results based on production data, several operational parameters affecting the denitrification rate have been obtained. The denitrification rate has negative relationships with the activated coke bed temperature, the flue gas flow, the H2O content, the SO2 content and the NH3 slip, and has positive relationships with the O2 content, the NOx content, the NH3–NOx molar ratio, the flue gas pressure and the regeneration temperature. Properly increasing the sintering air leakage or the cooling air added into flue gas is beneficial to increase the denitrification rate. Priority should be given to O2, NH3–NOx molar ratio and flue gas flow to improve the denitrification rate. Additionally, a linear model, which had been validated, was developed and can be used to predict and control the denitrification rate.展开更多
Nitrogen oxides(NOx) from flue gas can be removed efficiently by activated carbon continuously irradiated by microwave,which,however,needs high temperature and consumes excessive carbon. If catalyst is added into acti...Nitrogen oxides(NOx) from flue gas can be removed efficiently by activated carbon continuously irradiated by microwave,which,however,needs high temperature and consumes excessive carbon. If catalyst is added into activated carbon,then reaction temperature can be reduced and selectivity of reaction enhanced. The effects on flue gas denitrification by adding different catalysts to microwave reactor were studied in this paper. It was found that the addition of catalyst could reduce the microwave power required by the same removal efficiency obviously;the difference of removal efficiency was different due to different catalysts,and the Cu-based catalyst has more catalytic action efficiency. Reaction temperature decreased by about 200℃ and removal efficiency increased by 25% after adding Cu-based catalyst. In addition,characteristic analysis for activated carbon conducted by X-ray diffraction confirmed that active component of catalyst existed on the surface of activated carbon.展开更多
With the revision of emission standards, deep desulphurization and DeNO X is needed in circulating fluidized bed (CFB) boilers. The operation of the first set of 300-MW CFB boiler plus limestone/gypsum wet flue gas de...With the revision of emission standards, deep desulphurization and DeNO X is needed in circulating fluidized bed (CFB) boilers. The operation of the first set of 300-MW CFB boiler plus limestone/gypsum wet flue gas desulphurization (FGD) system in the world shows that deep desulphurization and DeNO X of CFB boilers has higher SO2 removal efficiency at a lower Ca/S ratio compared with traditional inner desulphurization mode. It can meet the increasingly rigid emission standards, and is suitable for more fuels. Deep desulphurization and DeNO X can also achieve a highly-efficient high-temperature CFB boiler that can not only achieve inner desulphurization and low NO X emission, but benefits low-grade, high sulfur content fuels as well. Research of deep desulphurization and DeNO X will be a developing direction for CFB boilers.展开更多
Selective catalytic reduction (SCR) of NOx with NH3 is an effective technique to remove NOx from stationary sources, such as coal-fired power plant and industrial boilers. Some of elements in the fly ash deactivate ...Selective catalytic reduction (SCR) of NOx with NH3 is an effective technique to remove NOx from stationary sources, such as coal-fired power plant and industrial boilers. Some of elements in the fly ash deactivate the catalyst due to strong chemisorptions on the active sites. The poisons may act by simply blocking active sites or alter the adsorption behaviors of reactants and products by an electronic interaction. This review is mainly focused on the chemical poisoning on V2O5-based catalysts, environmental-benign catalysts and low temperature catalysts. Several common poisons including alkali/alkaline earth metals, SO2 and heavy metals etc. are referred and their poisoning mechanisms on catalysts are discussed. The regeneration methods of poisoned catalysts and the development of poison-resistance catalysts are also compared and analyzed. Finally, future research directions in developing poisoning resistance catalysts and facile efficient regeneration methods for SCR catalysts are proposed.展开更多
基金Supported by the National Science Foundation of China for Distinguished Young Scholars(No.51325601)Major Program of National Science Foundation of China(No.51390492)Joint Funds of National Science Foundation of China(No.U1560205)
文摘Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising.
基金financially supported by the National Key Research and Development Program of China(2016YFB0600701)。
文摘A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study.The flue gas containing 200 mg·m^-3NO,1000-4000 mg·m^-3SO(2,)3%-9%O(2)and 10%-20%CO(2)was first oxidized b(y)O3 and then absorbed by ammonia in a bubbling reactor.Increasing the ammonia concentration or the SO2 content in flue gas can promote the absorption of NOx and extend the effective absorption time.On the contrary,both increasing the absorbent temperature or the O(2)content shorten the effective absorption time of NO((x.))The change of solution pH had substantial influence on NOx absorption.In the presence of CO(2)the NOx removal efficiency reached 89.2%when the absorbent temperature was raised to 60℃and the effective absorption time can be maintained for 8 h,which attribute to the buffering effect in the absorbent.Besides,both the addition of Na(2)S2 O3 and urea can promote the NOx removal efficiency when the absorbent temperature is 25℃and the addition of Na(2)S2 O3 had achieved better results.The advantage of adding Na(2)S2 O3 became less evident at higher absorbent temperature and coexistence of CO(2.)In all experiments,SO(2)removal efficiency was always above 99%,and it was basically not affected by the above factors.
文摘In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.
文摘To control contamination of flue gas emission NOx, the author mixcd method of preparing new magnesia base catalyst and researched on denitrificating fine gas by directness catalytic decomposition. Usually removal rate of NO is regarded on the main evaluation criteria. The author analyzed calcination temperature of catalyzer manufacturing process, the temperature of flue gas desorption tower, bed height and efficiency denitrification of NO concentration. And discussed the result of both denitrate lore-and-aft of FT-IR and XRD. The experiment indicates that magnesia base catalyst is available to directness catalytic decomposition denitrificate flue gas. Through denitrification rate is from 85% to 95%. The ingredient of magnesia base catalyst is made from magnesia, firming agent, addition agent. Height denitration bed was 4 cm- 5 cm, deuitration reaction temperature is 130℃-170℃, through the analyses above, presumed that magnesia base catalyst exist activating of vice, and analyzed this vice preliminarily.
文摘Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influencing factors for simul- taneous removal of SO2 and NO, and removal mechanism of SO2 and NO were studied. After the optimal values of concentration of O2 in flue gas, the relative humidity of flue gas and the irradiation time in the photocatalysis reactor were used, the efficiencies of removal for SO2 and NO can be achieved above 98% and about 67%, respectively. According to the results of removal products analysis, the re- moval mechanism of SO2 and NO based on TiO2 photocatlysis can be put forward, namely, SO2 was oxidized to SO3 partly, the bulk of NO was oxidized to NO2, and both were removed by resorbing finally.
基金the Significant Pre-research Foundation of North China Electric PowerUniversity(D03-035)
文摘The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed(CFB).The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification.Removal efficiencies of 95.5%for SO2 and 64.8%for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods.The results in- dicated that more nitrogen species appeared in the spent absorbent except sulfur species.A scanning electron microscope(SEM)and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,oxidizing highly reactive absorbent and spent absorbent.The simultaneous removal mechanism of SO2 and NO based on this absorbent was pro- posed according to the experimental results.
基金supported by the National Key Research and Development Program of China(No.2017YFC0210600)the National Natural Science Foundation of China(No.51978644)。
文摘With the vigorous development of China's iron and steel industry and the introduction of ultra-low emission policies,the emission of pollutants such as SO_(2)and NO x has received unprecedented attention.Considering the increase of the proportion of semi-dry desulfurization technology in the desulfurization process,several semi-dry desulphurization technologies such as flue gas circulating fluidized bed(CFB),dense flow absorber(DFA)and spray drying absorption(SDA)are briefly summarized.Moreover,a method for simultaneous treatment of SO_(2)and NOx in sintering/pelletizing flue gas by O_(3)oxidation combined with semidry method is introduced.Meantime,the effects of key parameters such as O_(3)/NO molar ratio,Ca SO_(3),SO_(2),reaction temperature,Ca/(S+2 N)molar ratio,droplet size and approach to adiabatic saturation temperature(AAST)on denitrification and desulfurization are analyzed.Furthermore,the reaction mechanism of denitrification and desulfurization is further elucidated.Finally,the advantages and development prospects of the new technology are proposed.
文摘An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was carried out using this absorbent in a flue gas circulating fluidized bed (CFB). The highest simultaneous removal efficiency, 94.5% of SO2 and 64.2% of NO, was achieved under the optimal experiment conditions. Scanning Electron Microscope (SEM) and Accessory X-ray Energy Spectrometer (EDX) were used to observe the surface characteristics of fly ash, lime, "Oxygen-enriched" highly reactive absorbent and the spent absorbent. An ion chromatograph (IC) and chemical analysis methods were used to determine the contents of sulfate, sulfite, nitrate and nitrite in the spent absorbents, the results showed that sulfate and nitrite were the main products for desulfurization and denitrification respectively. The mechanism of removing SO2 and NO simultaneously was proposed based on the analysis results of SEM, EDX, IC and the chemical analysis methods.
基金supported by the National Basic Research Program of China(Grant No.2013CB228301)
文摘A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.
基金The authors would like to thank the financial support of Fundamental Research Funds for the Central Universities(Grant No.FRF-IC-18-010).
文摘The denitrification rate of the cross-flow activated coke flue gas purification facility varies with operational parameters. According to the simulated experiments, the denitrification rate with the height drop of the denitrification unit experiences 100%, rapid decreasing, and gradual rising to the equilibrium. According to the correlation analysis results based on production data, several operational parameters affecting the denitrification rate have been obtained. The denitrification rate has negative relationships with the activated coke bed temperature, the flue gas flow, the H2O content, the SO2 content and the NH3 slip, and has positive relationships with the O2 content, the NOx content, the NH3–NOx molar ratio, the flue gas pressure and the regeneration temperature. Properly increasing the sintering air leakage or the cooling air added into flue gas is beneficial to increase the denitrification rate. Priority should be given to O2, NH3–NOx molar ratio and flue gas flow to improve the denitrification rate. Additionally, a linear model, which had been validated, was developed and can be used to predict and control the denitrification rate.
基金supported by the National Natural Science Foundation of China (Grant No.50976035)
文摘Nitrogen oxides(NOx) from flue gas can be removed efficiently by activated carbon continuously irradiated by microwave,which,however,needs high temperature and consumes excessive carbon. If catalyst is added into activated carbon,then reaction temperature can be reduced and selectivity of reaction enhanced. The effects on flue gas denitrification by adding different catalysts to microwave reactor were studied in this paper. It was found that the addition of catalyst could reduce the microwave power required by the same removal efficiency obviously;the difference of removal efficiency was different due to different catalysts,and the Cu-based catalyst has more catalytic action efficiency. Reaction temperature decreased by about 200℃ and removal efficiency increased by 25% after adding Cu-based catalyst. In addition,characteristic analysis for activated carbon conducted by X-ray diffraction confirmed that active component of catalyst existed on the surface of activated carbon.
文摘With the revision of emission standards, deep desulphurization and DeNO X is needed in circulating fluidized bed (CFB) boilers. The operation of the first set of 300-MW CFB boiler plus limestone/gypsum wet flue gas desulphurization (FGD) system in the world shows that deep desulphurization and DeNO X of CFB boilers has higher SO2 removal efficiency at a lower Ca/S ratio compared with traditional inner desulphurization mode. It can meet the increasingly rigid emission standards, and is suitable for more fuels. Deep desulphurization and DeNO X can also achieve a highly-efficient high-temperature CFB boiler that can not only achieve inner desulphurization and low NO X emission, but benefits low-grade, high sulfur content fuels as well. Research of deep desulphurization and DeNO X will be a developing direction for CFB boilers.
基金This research was supported by the National Natural Science Foundation of China (Grant Nos. 21325731, 51478241 and 21407088), and National High-Tech Research and the Development (863) Program of China (No. 2013AA065401) and the International Postdoctoral Exchange Fellowship Program of China (No. 20130032).
文摘Selective catalytic reduction (SCR) of NOx with NH3 is an effective technique to remove NOx from stationary sources, such as coal-fired power plant and industrial boilers. Some of elements in the fly ash deactivate the catalyst due to strong chemisorptions on the active sites. The poisons may act by simply blocking active sites or alter the adsorption behaviors of reactants and products by an electronic interaction. This review is mainly focused on the chemical poisoning on V2O5-based catalysts, environmental-benign catalysts and low temperature catalysts. Several common poisons including alkali/alkaline earth metals, SO2 and heavy metals etc. are referred and their poisoning mechanisms on catalysts are discussed. The regeneration methods of poisoned catalysts and the development of poison-resistance catalysts are also compared and analyzed. Finally, future research directions in developing poisoning resistance catalysts and facile efficient regeneration methods for SCR catalysts are proposed.