The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 conc...The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.展开更多
CO_(2)mineralization as a promising CO_(2)mitigation strategy can employ industrial alkaline solid wastes to achieve net emission reduction of atmospheric CO_(2).The red mud is a strong alkalinity waste residue produc...CO_(2)mineralization as a promising CO_(2)mitigation strategy can employ industrial alkaline solid wastes to achieve net emission reduction of atmospheric CO_(2).The red mud is a strong alkalinity waste residue produced from the aluminum industry by the Bayer process which has the potential for the industrial CO_(2)large scale treatment.However,limited by complex components of red mud and harsh operating conditions,it is challenging to directly mineralize CO_(2)using red mud to recover carbon and sodium resources and to produce mineralized products simultaneously with high economic value efficiently.Herein,we propose a novel electrochemical CO_(2)mineralization strategy for red mud treatment driven by hydrogen-cycled membrane electrolysis,realizing mineralization of CO_(2)efficiently and recovery of carbon and sodium resources with economic value.The system utilizes H_(2)as the redox-active proton carrier to drive the cathode and anode to generate OH^(-) and H^(+) at low voltage,respectively.The H^(+) plays as a neutralizer for the alkalinity of red mud and the OH^(-) is used to mineralize CO_(2)into generate highpurity NaHCO_(3)product.We verify that the system can effectively recover carbon and sodium resources in red mud treatment process,which shows that the average electrolysis efficiency is 95.3%with highpurity(99.4%)NaHCO_(3)product obtained.The low electrolysis voltage of 0.453 V is achieved at10 mA·cm^(-2) in this system indicates a potential low energy consumption industrial process.Further,we successfully demonstrate that this process has the ability of direct efficient mineralization of flue gas CO_(2)(15%volume)without extra capturing,being a novel potential strategy for carbon neutralization.展开更多
基金Project(2017YFC0210500)supported by the National Key Technology R&D Program of ChinaProject(2017ACA092)supported by the Major Projects of Technical Innovation in Hubei Province,China
文摘The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.
基金funded by the Science and Technology Department of Sichuan Province(2020YFH0012)。
文摘CO_(2)mineralization as a promising CO_(2)mitigation strategy can employ industrial alkaline solid wastes to achieve net emission reduction of atmospheric CO_(2).The red mud is a strong alkalinity waste residue produced from the aluminum industry by the Bayer process which has the potential for the industrial CO_(2)large scale treatment.However,limited by complex components of red mud and harsh operating conditions,it is challenging to directly mineralize CO_(2)using red mud to recover carbon and sodium resources and to produce mineralized products simultaneously with high economic value efficiently.Herein,we propose a novel electrochemical CO_(2)mineralization strategy for red mud treatment driven by hydrogen-cycled membrane electrolysis,realizing mineralization of CO_(2)efficiently and recovery of carbon and sodium resources with economic value.The system utilizes H_(2)as the redox-active proton carrier to drive the cathode and anode to generate OH^(-) and H^(+) at low voltage,respectively.The H^(+) plays as a neutralizer for the alkalinity of red mud and the OH^(-) is used to mineralize CO_(2)into generate highpurity NaHCO_(3)product.We verify that the system can effectively recover carbon and sodium resources in red mud treatment process,which shows that the average electrolysis efficiency is 95.3%with highpurity(99.4%)NaHCO_(3)product obtained.The low electrolysis voltage of 0.453 V is achieved at10 mA·cm^(-2) in this system indicates a potential low energy consumption industrial process.Further,we successfully demonstrate that this process has the ability of direct efficient mineralization of flue gas CO_(2)(15%volume)without extra capturing,being a novel potential strategy for carbon neutralization.