The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technolog...The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.展开更多
A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfe...A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.展开更多
Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue...Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue gas.The experiments measured the effects of inlet air temperature, inlet air velocity and circulating water flow rate on the flow and heat transfer. The results show that higher inlet air temperatures and lower inlet air velocities lower the flow resistance and increase the heat transfer coefficient. The stainless steel packing had better surface wettability and larger thermal conductivity than the plastic packing, which enhanced the heat transfer between the water and the saturated moist air. When both the flow resistance reduction and the heat transfer enhancement were considered, the experimental results gave an optimal packing-specific surface area. A packed heat exchanger tower was designed for waste heat recovery from the flue gas of gas-fired boilers based on the experimental results which had better flow and heat transfer characteristics with lower pump and fan power consumption, more stable system operation and less thermal fluctuations compared with a non-packed heat transfer system with atomized water.展开更多
文摘The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.
基金supported by the National Basic Research Program of China(Grant No.2013CB228301)
文摘A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.
基金support extended by the National Basic Research Program of China(2013CB228301)is gratefully acknowledged
文摘Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue gas.The experiments measured the effects of inlet air temperature, inlet air velocity and circulating water flow rate on the flow and heat transfer. The results show that higher inlet air temperatures and lower inlet air velocities lower the flow resistance and increase the heat transfer coefficient. The stainless steel packing had better surface wettability and larger thermal conductivity than the plastic packing, which enhanced the heat transfer between the water and the saturated moist air. When both the flow resistance reduction and the heat transfer enhancement were considered, the experimental results gave an optimal packing-specific surface area. A packed heat exchanger tower was designed for waste heat recovery from the flue gas of gas-fired boilers based on the experimental results which had better flow and heat transfer characteristics with lower pump and fan power consumption, more stable system operation and less thermal fluctuations compared with a non-packed heat transfer system with atomized water.