期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Fluid migration paths in the marine strata of typical structures in the western Hubei-eastern Chongqing area,China 被引量:3
1
作者 Xu Guosheng Liang Jiaju +4 位作者 Gong Deyu Wang Guozhi Yuan Haifeng Cao Junxing Zhang Chengfu 《Petroleum Science》 SCIE CAS CSCD 2013年第1期1-18,共18页
The western Hubei-eastern Chongqing area is an important prospective zone for oil and gas exploration in the central Yangtze area. Three representative structures, the Xinchang structure, Longjuba gas-bearing structur... The western Hubei-eastern Chongqing area is an important prospective zone for oil and gas exploration in the central Yangtze area. Three representative structures, the Xinchang structure, Longjuba gas-bearing structure and the Jiannan gas field, were selected to analyze biomarker parameters in marine strata and to examine various types of natural gas and hydrocarbon sources. Fluid inclusions; carbon, oxygen, and strontium isotopic characteristics; organic geochemical analysis and simulation of hydrocarbon generation and expulsion history of source rocks were used for tracing fluid migration paths in marine strata of the study area. The Carboniferous-Triassic reservoirs in three typical structures all experienced at least two stages of fluid accumulation. All marine strata above the early Permian were shown to have fluids originating in the Permian rocks, which differed from the late stage fluids. The fluids accumulated in the late Permian reservoirs of the Xinchang structure were Cambrian fluids, while those in the late Carboniferous reservoirs were sourced from a combination of Silurian and Cambrian fluids. A long-distance and large-scale cross-formational flow of fluids destroyed the preservation conditions of earlier accumulated hydrocarbons. A short-distance cross-formational accumulation of Silurian fluids was shown in the late Permian reservoirs of the Longjuba structure with favorable hydrocarbon preservation conditions. The fluid accumulation in the Carboniferous reservoirs of the Jiannan structure mainly originated from neighboring Silurian strata with a small amount from the Cambrian strata. As a result, the Jiannan structure was determined to have the best preservation conditions of the three. Comparative analysis of fluid migration paths in the three structures revealed that the zone with a weaker late tectonism and no superimposition and modification of the Upper and Lower Paleozoic fluids or the Upper Paleozoic zone with the fluid charging from the Lower Paleozoic in the western Hubei-easteru Chongqing area are important target areas for future exploration. 展开更多
关键词 Western Hubei-eastern Chongqing area marine strata geochemical tracer fluid migration path
下载PDF
Large-scale Migration of Fluids toward Foreland Basins during Collisional Orogeny: Evidence from Triassic Anhydrock Sequences and Regional Alteration in the Middle-Lower Yangtze Area 被引量:3
2
作者 HOUZengqian YANGZhusen LIYinqing ZENGPusheng MENGYifeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期203-220,共18页
The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large dist... The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large distinctive Cu-Fe-Au metallogenic belt. In the tectonic evolution, large-scale migration and convergence of fluids toward foreland basins induced during the collisional orogeny of the Yangtze and North China continental blocks were of vital importance for the formation of the metallogenic belt. Through geological surveys of the middle-lower Yangtze area, three lines of evidence of large-scale fluid migration are proposed: (1) The extensive dolomitic and silicic alteration penetrating Cambrian-Triassic strata generally occurs in a region sandwiched between the metallogenic belt along the Yangtze River and the Dabie orogenic belt, and in the alteration domain alternately strong and weak alteration zones extend in a NW direction and are controlled by the fault system of the Dabie orogenic belt; it might record the locus of the activities of long-distance migrating fluids. (2) The textures and structures of very thick Middle-Lower Triassic anhydrock sequences in restricted basins along the river reveal the important contribution of the convergence of regional hot brine in restricted basins and the chemical deposition or their formation. (3) Early-Middle Triassic syndepositional iron carbonate sequences and Fe-Cu-Pb-Zn massive sulfide deposits alternate with anhydrock sequences or are separated from the latter, but all of them occur in the same stratigraphic horizon and are intimately associated with each other, being the product of syndeposition of high-salinity hot brine. According to the geological surveys, combined with previous data, the authors propose a conceptual model of fluid migration-convergence and mineralization during the Dabie collisional orogeny. 展开更多
关键词 large-scale migration of fluids collisional orogeny anhydrock sequence regional alteration middle-lower Yangtze River
下载PDF
Evidence of Dual Scale Porous Mechanisms During Fluid Migration in Hardwood Species (Ⅱ) A Dual Scale Computational Model to Describe the Experimental Results
3
作者 Patrick PERR 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第6期783-791,共9页
The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see... The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see part 1 of this paper), increases quickly very close to the cavity, but requires a very long time for the remaining part of the sample to absorb the moisture in wetting. For this configuration and this material, the macroscopic approach fails. Consequently, a dual-porosity approach is proposed. The computational domain uses a 2-D axisymmetric configuration for which the axial coordinate represents the macroscopic longitudinal direction of the sample whereas the radial coordinate allows the slow migration from each active vessel towards the fibre zone to be considered. The latter is a microscopic space variable. The moisture content field evolution depicts clearly the dual scale mechanisms:a very fast longitudinal migration in the vessel followed by a slow migration from the vessel towards the fibre zone.The macroscopic moisture content field resulting from this dual scale mechanism is in quite good agreement with the experimental data. 展开更多
关键词 fluid migration DUAL-POROSITY computational model HARDWOOD VESSEL FIBRE
下载PDF
Perspectives on the Potential Migration of Fluids Associated with Hydraulic Fracturing in Southwest Florida
4
作者 William C. Hutchings Richard G. Lewis 《Journal of Environmental Science and Engineering(A)》 2018年第3期108-124,共17页
The variable-density flow model-SEAWAT Version 4, was used to evaluate the hydrogeological conditions associatedwith hydraulic fracturing (fracking) the limestone oil reservoir in the Lower Cretaceous Sunniland Form... The variable-density flow model-SEAWAT Version 4, was used to evaluate the hydrogeological conditions associatedwith hydraulic fracturing (fracking) the limestone oil reservoir in the Lower Cretaceous Sunniland Formation of Southwest Florida.This research contributes to the understanding of the controls on fluid and potential contaminant migration, following high pressurehydraulic fracturing. A hydraulic fracturing treatment used recently in this formation at the Collier-Hogan 20-3H well represents thebase case simulation. Multiple stage fracturing using typical stress periods, a modelled fracture zone radius, and various injectionrates were tested to evaluate the potential for horizontal and vertical fluid migration in and from the reservoir under dynamicconditions, with TDS used as a tracer. Hypothetical scenarios including preferential vertical pathways between the SunnilandFormation and the Lower Floridan aquifer Boulder Zone were also simulated. Results indicate that injected fluids do not migratesignificantly in the lateral and vertical directions beyond the design fractured zone, unless a preferential pathway exists within closeproximity to the fractured zone. In a worst-case scenario under the simulated conditions, vertical heads are approximately 580 metersgreater than static conditions and fluids associated with hydraulic fracturing vertically migrate approximately 500 meters; therefore,the quality of the deepest sources of drinking water is not compromised. Analytical results from a monitoring well installed in theimmediate vicinity of the Collier-Hogan 20-3H well and at the base of the deepest source of drinking water support the conclusionthat impacts from hydraulic fracturing fluids have not migrated into the deepest sources of drinking water. 展开更多
关键词 Hydraulic fracturing Sunniland Formation fluid migration
下载PDF
New Geophysical Evidences of Fluid Related Features in the Western Ionian Sea-Part Ⅱ: Data Interpretation
5
作者 V. Volpi D. Accettella M. Giustiniani U. Tinivella 《Journal of Shipping and Ocean Engineering》 2011年第2期116-123,共8页
The investigated area is located in the western Ionian Sea, which is an area widely occupied by the external from of the Calabrian Arc. It is characterized by a very rough morphology of the seafloor mainly induced by ... The investigated area is located in the western Ionian Sea, which is an area widely occupied by the external from of the Calabrian Arc. It is characterized by a very rough morphology of the seafloor mainly induced by the thrusting and back-thrusting activity. Such a tectonic regime is extremely favourable for the presence of gas and related fluid migration. New processed line MS-24 and swath-bathymetric data highlighted the presence of positive structures at the seafloor interpreted as mud volcanoes. Along the seismic profile we have also recognized a high amplitude reflector that, although it corresponds to a stratigraphic horizon, it shows an anomalous high amplitude character. The seismic velocity field shows evidences of free gas occurrence and so it cannot be excluded the hypothesis that the high amplitude reflector could be a "bottom simulating reflector-BSR". 展开更多
关键词 Mud volcano BSR GAS fluid migration.
下载PDF
Exploring the frontiers of deep underground sciences and engineering—China Yunlong Lake Laboratory is striving to be the best
6
作者 Lihua Hu Jianguo Wang +3 位作者 Ali Karrech Xiaozhao Li Peng Zhao Lulu Liu 《Deep Underground Science and Engineering》 2022年第2期131-137,共7页
This paper introduces the establishment of deep underground infrastructure for science and engineering research.First,the representative deep underground research laboratories and facilities in the world and their fun... This paper introduces the establishment of deep underground infrastructure for science and engineering research.First,the representative deep underground research laboratories and facilities in the world and their functions were summarized and reviewed.Then,the plan and service target of China Yulong Lake Laboratory were proposed for the storage of resources and energy,as well as the sealing of hazardous waste in deep underground space.On this basis,this paper reveals how the facility addresses its key scientific issue on“The law of fluid matter migration in deep underground space”and engineering significance.Finally,the construction progress of the facility components was demonstrated in details.As is hoped,this paper would provide useful reference to the deep underground research community;meanwhile,international collaboration on deep underground research is highly welcome. 展开更多
关键词 fluid matter migration large spatial scale long time scale multi-lithology research laboratory and facility underground space
下载PDF
Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling 被引量:5
7
作者 Mingqi LIU Zhonghai LI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第7期823-852,共30页
Thinning of the cratonic lithosphere is common in nature, but its destruction is not. In either case, the mechanisms for both thinning and destruction are still widely under debate. In this study, we have made a revie... Thinning of the cratonic lithosphere is common in nature, but its destruction is not. In either case, the mechanisms for both thinning and destruction are still widely under debate. In this study, we have made a review on the processes and mechanisms of thinning and destruction of cratonic lithosphere according to previous studies of geological/geophysical observations and numerical simulations, with specific application to the North China Craton(NCC). Two main models are suggested for the thinning and destruction of the NCC, both of which are related to subduction of the oceanic lithosphere. One is the "bottom-up" model, in which the deeply subducting slab perturbs and induces upwelling from the hydrous mantle transition zone(MTZ). The upwelling produces mantle convection and erodes the bottom of the overriding lithosphere by the fluid-meltperidotite reaction. Mineral compositions and rheological properties of the overriding lithospheric mantle are changed, allowing downward dripping of lithospheric components into the asthenosphere. Consequently, lithospheric thinning or even destruction occurs. The other is the "top-down" model, characterized by the flat subduction of oceanic slab beneath the overriding cratonic lithosphere. Dehydration reactions from the subducting slab would significantly hydrate the lithospheric mantle and decrease its rheological strength. Then the subduction angle may be changed from shallow to steep, inducing lateral upwelling of the asthenosphere. This upwelling would heat and weaken the overriding lithospheric mantle, which led to the weakened lithospheric mantle dripping into the asthenosphere. These two models have some similarities, in that both take the subducting oceanic slab and relevant fluid migration as the major driving mechanism for thinning or destruction of the overriding cratonic lithosphere. The key difference between the two models is the effective depth of the subducting oceanic slab. One is stagnation and flattening in the MTZ, whereas the other is flat subduction at the bottom of the cratonic lithosphere. In the NCC, the eastern lithosphere was likely affected by subduction of the Izanagi slab during the Mesozoic, which would have perturbed the asthenosphere and the MTZ, and induced fluid migration beneath the NCC lithosphere. The upwelling fluid may largely have controlled the reworking of the NCC lithosphere. In order to discuss and analyze these two models further, it is crucial to understand the role of fluids in the subduction zone and the MTZ. Here, we systematically discuss phase transformations of hydrous minerals and the transport processes of water in the subduction system. Furthermore, we analyze possible modes of fluid activity and the problems to explore the applied feasibility of each model. In order to achieve a comprehensive understanding of the mechanisms for thinning and destruction of cratonic lithosphere, we also consider four additional possible dynamic models: extension-induced lithospheric thinning, compression-induced lithospheric thickening and delamination, large-scale mantle convection and thermal erosion, and mantle plume erosion. Compared to the subduction-related models presented here, these four models are primarily controlled by the relatively simple and single process and mechanism(extension, compression, convection, and mantle plume, respectively), which could be the secondary driving mechanisms for the thinning and destruction of lithosphere. 展开更多
关键词 Lithospheric thinning Cratonic destruction Big mantle wedge Plate subduction fluid migration NUMERICALMODELING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部