This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ...Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.展开更多
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press...Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.展开更多
A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effec...A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.展开更多
This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The v...This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.展开更多
Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethan...Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester.Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics.Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses,the distribution of microchannels in the interface,the spreading characteristics of the fluid in contact interface,as well as the mechanical driving mechanism.Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels,which shows that the feature lengths of the microchannels,the spreading area and the spreading rate of the fluid are inversely proportional to the load.And the flow path of the fluid in the interface is mainly divided into three stages:along the wall of the island,generating liquid bridges,and moving from the tip side to the root side in the wedge-shaped channel.The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid.In addition,the phenomenon of“trapped air”occurs during the flow process due to the irregular characteristics of the microchannel.This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface,the friction and lubrication of the mechanical system,and the sealing mechanism.展开更多
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na...Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.展开更多
The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five differ...The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five different types of nanoparticle samples are accounted for in this current study,namely gold Au,silver Ag,molybdenum disulfide MoS_(2),aluminum oxide Al_(2)O_(3),and silicon dioxide SiO_(2).Blood,a micropolar fluid,serves as the common base fluid.An exact closed-form solution for this problem is derived for the first time in the literature.The results are particularly validated against those for the Newtonian fluid and show excellent agreement.It was found that increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and momentum boundary layers.A quantitative decay in the Nusselt number for a micropolar fluid,as compared to a Newtonian one for all the tested nanoparticles,is anticipated.Gold and silver nanoparticles(i)intensify in the flow parameter as the concentration of nanoparticles increases(ii)yield a higher thermal transfer rate,whereas molybdenum disulfide,aluminum oxide,and silicon dioxide exhibit a converse attitude for both Newtonian and micropolar fluids.The reduction in film thickness for fluid comprising gold particles,as compared to the rest of the nanoparticles,is remarkable.展开更多
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study...This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study is a grey,non-scattered fluid that both fascinates and transmits radiation.The leading equations are discretized using the finite differencemethod(FDM).UsingMATLABsoftware,the impacts of flowfactors on flowfields are revealed with particular examples in graphs and a table.In this regard,FDM results show that the velocity and temperature gradients increase with an increase of Eckert number.Furthermore,tables of the data indicate the influence of flow-contributing factors on the skin friction coefficients,and Nusselt numbers.When comparing constant and variable flow regimes,the constant flow regime has greater values for the nondimensional skin friction coefficient.This research is both innovative and fascinating since it has the potential to expand our understanding of fluid dynamics and to improve many different sectors.展开更多
The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and s...The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and stationary,while the top plate is impermeable and moving.The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations.The Homotopy Perturbation Method(HPM)is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution.The analysis includes plotting the velocity profile for different Reynolds number values and temperature distribution curves for distinct physical parameters such as Reynolds number,Deborah number,magnetic parameter,porosity parameter,radiation parameter,and Prandtl number.In the case of injection,the temporal profile declines with an increase in radiation parameter as the plates move away from each other,and an opposite trend is observed as plates move towards each other.Furthermore,the skin friction coefficient and heat transfer rate are analysed for the impact of these parameters using HPM.The numerical values obtained using HPM are compared using the classical finite difference method.The results show good agreement between the semi-analytical and numerical solutions.展开更多
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a...A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.展开更多
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize...Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of d...Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed.展开更多
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)...In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..展开更多
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three...The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates.展开更多
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent...The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.展开更多
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
基金supported by National Natural Science Foundation of China(52336005 and 52106133).
文摘Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.
基金Supported by National Natural Science Foundation of China(52104049)Young Elite Scientist Sponsorship Program by BAST(BYESS2023262)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004).
文摘Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
基金the support from the National Key R&D Program of China(No.2018YFC1901606).
文摘A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.
基金Project supported by the National Natural Science Foundation of China(No.12262026)the Natural Science Foundation of the Inner Mongolia Autonomous Region of China(No.2021MS01007)+1 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region of China(No.NMGIRT2323)the Fundamental Research Funds for the Central Universities(Nos.2232022G-13,2232023G-13,and 2232024G-13)。
文摘This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.
基金supported by the National Natural Science Foundation of China(Nos.52375178,52305188,51975174,51875153,and 51805508)the Natural Science Foundation of Anhui Province(Nos.2308085ME158 and 2308085QE156).
文摘Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester.Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics.Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses,the distribution of microchannels in the interface,the spreading characteristics of the fluid in contact interface,as well as the mechanical driving mechanism.Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels,which shows that the feature lengths of the microchannels,the spreading area and the spreading rate of the fluid are inversely proportional to the load.And the flow path of the fluid in the interface is mainly divided into three stages:along the wall of the island,generating liquid bridges,and moving from the tip side to the root side in the wedge-shaped channel.The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid.In addition,the phenomenon of“trapped air”occurs during the flow process due to the irregular characteristics of the microchannel.This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface,the friction and lubrication of the mechanical system,and the sealing mechanism.
文摘Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.
基金The authors did not receive any funding support from any source.It is self-financed solely.
文摘The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five different types of nanoparticle samples are accounted for in this current study,namely gold Au,silver Ag,molybdenum disulfide MoS_(2),aluminum oxide Al_(2)O_(3),and silicon dioxide SiO_(2).Blood,a micropolar fluid,serves as the common base fluid.An exact closed-form solution for this problem is derived for the first time in the literature.The results are particularly validated against those for the Newtonian fluid and show excellent agreement.It was found that increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and momentum boundary layers.A quantitative decay in the Nusselt number for a micropolar fluid,as compared to a Newtonian one for all the tested nanoparticles,is anticipated.Gold and silver nanoparticles(i)intensify in the flow parameter as the concentration of nanoparticles increases(ii)yield a higher thermal transfer rate,whereas molybdenum disulfide,aluminum oxide,and silicon dioxide exhibit a converse attitude for both Newtonian and micropolar fluids.The reduction in film thickness for fluid comprising gold particles,as compared to the rest of the nanoparticles,is remarkable.
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
文摘This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study is a grey,non-scattered fluid that both fascinates and transmits radiation.The leading equations are discretized using the finite differencemethod(FDM).UsingMATLABsoftware,the impacts of flowfactors on flowfields are revealed with particular examples in graphs and a table.In this regard,FDM results show that the velocity and temperature gradients increase with an increase of Eckert number.Furthermore,tables of the data indicate the influence of flow-contributing factors on the skin friction coefficients,and Nusselt numbers.When comparing constant and variable flow regimes,the constant flow regime has greater values for the nondimensional skin friction coefficient.This research is both innovative and fascinating since it has the potential to expand our understanding of fluid dynamics and to improve many different sectors.
文摘The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and stationary,while the top plate is impermeable and moving.The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations.The Homotopy Perturbation Method(HPM)is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution.The analysis includes plotting the velocity profile for different Reynolds number values and temperature distribution curves for distinct physical parameters such as Reynolds number,Deborah number,magnetic parameter,porosity parameter,radiation parameter,and Prandtl number.In the case of injection,the temporal profile declines with an increase in radiation parameter as the plates move away from each other,and an opposite trend is observed as plates move towards each other.Furthermore,the skin friction coefficient and heat transfer rate are analysed for the impact of these parameters using HPM.The numerical values obtained using HPM are compared using the classical finite difference method.The results show good agreement between the semi-analytical and numerical solutions.
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
基金financially supported by the National Natural Science Foundation of China(No.51704062)the Fundamental Research Funds for the Central Universities,China(No.N2025019)。
文摘A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.
基金supported by the National Natural Science Foundation of China(41974139,42274148,42074142)。
文摘Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金the National Natural Science Foundation of China(No.52079077)the Natural Science Foundation of Shandong Province(No.ZR2021QE069).
文摘Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed.
基金supported by the National Natural Science Foundation of China(22078009)National Key Research and Development Program of China(2021YFC3001102,2021YFC3001100)。
文摘In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..
基金Supported by the National Natural Science Foundation of China (Nos.40930845 and 41006031)the International Science & Technology Cooperation Program of China (No. 2010DFA21740)the National Science and Technology Major Project (No. 2011ZX05026-004-06)
文摘The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates.
基金supported by the Basic Research on Drilling & Completion of Critical Wells for Oil & Gas (Grant No. 51221003)National Science Fund for Petrochemical Industry (Project No. U1262201)+2 种基金"863" National Project (Project No. 2013AA064803)National Science Fund for Distinguished Young Scholars (Project No. 50925414)National Natural Science Foundation (Project No. 51074173)
文摘The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.