期刊文献+
共找到8,746篇文章
< 1 2 250 >
每页显示 20 50 100
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
1
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem fluid flow Granular media Automatic differentiation(AD) Lattice Boltzmann method(LBM)
下载PDF
Desulfurization characteristics of slaked lime and regulation optimization of circulating fluidized bed flue gas desulfurization process--A combined experimental and numerical simulation study
2
作者 Jing Chen Wenqi Zhong +2 位作者 Guanwen Zhou Jinming Li Shasha Ding 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期163-175,共13页
Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ... Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance. 展开更多
关键词 Circulating fluidized bed flue gas desulfurization(CFB-FGD) Desulfurization characteristics Computational particle fluid dynamics (CPFD)numerical simulation Operational optimization gasesolid flow
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
3
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
CFD modeling of gas−liquid flow phenomenon in lead smelting oxygen-enriched side-blown furnace
4
作者 Zhen-yu ZHU Ping ZHOU +3 位作者 Xing-bang WAN Zhuo CHEN Ling ZHANG Shi-bo KUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2671-2685,共15页
A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effec... A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety. 展开更多
关键词 multiphase flow horizontal gas injection backward motion of airflow gas thermal expansion side-blown furnace lead smelting
下载PDF
Oscillatory squeeze flow through an Oldroyd-B fluid-saturated porous layer
5
作者 Yongjun JIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期2037-2054,共18页
This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The v... This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers. 展开更多
关键词 Oldroyd-B fluid squeeze flow porous media oscillating boundary
下载PDF
Topographic variation and fluid flow characteristics in rough contact interface
6
作者 Jiawei JI Wei SUN +5 位作者 Yu DU Yongqing ZHU Yuhang GUO Xiaojun LIU Yunlong JIAO Kun LIU 《Friction》 SCIE EI CAS CSCD 2024年第12期2774-2790,共17页
Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethan... Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester.Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics.Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses,the distribution of microchannels in the interface,the spreading characteristics of the fluid in contact interface,as well as the mechanical driving mechanism.Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels,which shows that the feature lengths of the microchannels,the spreading area and the spreading rate of the fluid are inversely proportional to the load.And the flow path of the fluid in the interface is mainly divided into three stages:along the wall of the island,generating liquid bridges,and moving from the tip side to the root side in the wedge-shaped channel.The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid.In addition,the phenomenon of“trapped air”occurs during the flow process due to the irregular characteristics of the microchannel.This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface,the friction and lubrication of the mechanical system,and the sealing mechanism. 展开更多
关键词 rough contact interface fluid flow topography evolution MICROCHANNEL in-situ observation
原文传递
Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties
7
作者 A.S.JOHN B.MAHANTHESH G.LORENZINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期677-694,共18页
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na... Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect. 展开更多
关键词 hybrid nanofluid cone-disk system laminar flow variable fluid property Nusselt number
下载PDF
Film Flow of Nano-Micropolar Fluid with Dissipation Effect
8
作者 Abuzar Abid Siddiqui Mustafa Turkyilmazoglu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2487-2512,共26页
The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five differ... The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five different types of nanoparticle samples are accounted for in this current study,namely gold Au,silver Ag,molybdenum disulfide MoS_(2),aluminum oxide Al_(2)O_(3),and silicon dioxide SiO_(2).Blood,a micropolar fluid,serves as the common base fluid.An exact closed-form solution for this problem is derived for the first time in the literature.The results are particularly validated against those for the Newtonian fluid and show excellent agreement.It was found that increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and momentum boundary layers.A quantitative decay in the Nusselt number for a micropolar fluid,as compared to a Newtonian one for all the tested nanoparticles,is anticipated.Gold and silver nanoparticles(i)intensify in the flow parameter as the concentration of nanoparticles increases(ii)yield a higher thermal transfer rate,whereas molybdenum disulfide,aluminum oxide,and silicon dioxide exhibit a converse attitude for both Newtonian and micropolar fluids.The reduction in film thickness for fluid comprising gold particles,as compared to the rest of the nanoparticles,is remarkable. 展开更多
关键词 Thin film flow micropolar fluid NANOPARTICLES molybdenum disulfide inclined substrate
下载PDF
Flow Field Characteristics of Multi-Trophic Artificial Reef Based on Computation Fluid Dynamics
9
作者 HUANG Junlin LI Jiao +3 位作者 LI Yan GONG Pihai GUAN Changtao XIA Xu 《Journal of Ocean University of China》 CAS CSCD 2024年第2期317-327,共11页
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef... On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity. 展开更多
关键词 artificial reef flow field characteristics computation fluid dynamics multi-trophic structure
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
10
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Finite Difference Approach on Magnetohydrodynamic Stratified Fluid Flow Past Vertically Accelerated Plate in Porous Media with Viscous Dissipation
11
作者 M.Sridevi B.Shankar Goud +1 位作者 Ali Hassan D.Mahendar 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期939-953,共15页
This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study... This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study is a grey,non-scattered fluid that both fascinates and transmits radiation.The leading equations are discretized using the finite differencemethod(FDM).UsingMATLABsoftware,the impacts of flowfactors on flowfields are revealed with particular examples in graphs and a table.In this regard,FDM results show that the velocity and temperature gradients increase with an increase of Eckert number.Furthermore,tables of the data indicate the influence of flow-contributing factors on the skin friction coefficients,and Nusselt numbers.When comparing constant and variable flow regimes,the constant flow regime has greater values for the nondimensional skin friction coefficient.This research is both innovative and fascinating since it has the potential to expand our understanding of fluid dynamics and to improve many different sectors. 展开更多
关键词 MHD FDM stratified fluid porous media unsteady flow
下载PDF
Radiation Effect on Heat Transfer Analysis of MHD Flow of Upper Convected Maxwell Fluid between a Porous and a Moving Plate
12
作者 P.Pai Nityanand B.Devaki +1 位作者 G.Bhat Pareekshith V.S.Sampath Kumar 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期655-673,共19页
The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and s... The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and stationary,while the top plate is impermeable and moving.The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations.The Homotopy Perturbation Method(HPM)is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution.The analysis includes plotting the velocity profile for different Reynolds number values and temperature distribution curves for distinct physical parameters such as Reynolds number,Deborah number,magnetic parameter,porosity parameter,radiation parameter,and Prandtl number.In the case of injection,the temporal profile declines with an increase in radiation parameter as the plates move away from each other,and an opposite trend is observed as plates move towards each other.Furthermore,the skin friction coefficient and heat transfer rate are analysed for the impact of these parameters using HPM.The numerical values obtained using HPM are compared using the classical finite difference method.The results show good agreement between the semi-analytical and numerical solutions. 展开更多
关键词 Upper convectedmaxwell fluid MHDsqueezing flow similarity transformations homotopy perturbationmethod finite difference method
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
13
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational fluid Dynamics Buckley-Leverett Equation Numerical Methods Two-phase fluid flow
下载PDF
Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process 被引量:2
14
作者 Jiahao Wang Peiyuan Ni +2 位作者 Chao Chen Mikael Ersson Ying Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期844-856,共13页
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a... A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%. 展开更多
关键词 Ruhrstahl-Heraeus refining gas blowing nozzle angle circulation flow rate mixing time multiphase flow
下载PDF
Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas–liquid slug flow by using ultrasonic Doppler method 被引量:1
15
作者 Lusheng Zhai Bo Xu +1 位作者 Haiyan Xia Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期323-340,共18页
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize... Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows. 展开更多
关键词 gas–liquid flow Complex fluids Measurement Ultrasonic Doppler Velocity profile Liquid film thickness
下载PDF
Particulate flow modelling in a spiral separator by using the Eulerian multi-fluid VOF approach 被引量:3
16
作者 Lingguo Meng Shuling Gao +4 位作者 Dezhou Wei Qiang Zhao Baoyu Cui Yanbai Shen Zhenguo Song 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期251-263,共13页
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ... The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation. 展开更多
关键词 Spiral separator Computational fluid dynamics(CFD) Eulerian multi-fluid VOF model Bagnold effect Particulate flow
下载PDF
Permeability evolution and gas flow in wet coal under non-equilibrium state:Considering both water swelling and process-based gas swelling 被引量:1
17
作者 Zhiyong Xiao Gang Wang +3 位作者 Changsheng Wang Yujing Jiang Feng Jiang Chengcheng Zheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期585-599,共15页
Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of d... Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed. 展开更多
关键词 gas flow Apparent permeability Water film ADSORPTION Non-equilibrium state
下载PDF
Numerical simulation of gas–liquid flow in the bubble column using Wray–Agarwal turbulence model coupled with population balance model 被引量:1
18
作者 Hongwei Liang Wenling Li +3 位作者 Zisheng Feng Jianming Chen Guangwen Chu Yang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期205-223,共19页
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)... In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors.. 展开更多
关键词 CFD–PBM Wray–Agarwal turbulence model gas–liquid flow Bubble column Interfacial force Wall lubrication force
下载PDF
Focused fluid flow in the Baiyun Sag, northern South China Sea: implications for the source of gas in hydrate reservoirs 被引量:11
19
作者 陈端新 吴时国 +3 位作者 董冬冬 米立军 付少英 施和生 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期178-189,共12页
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three... The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates. 展开更多
关键词 gas hydrate thermogenic gas biogenic gas Dongsha Movement focused fluid flow SouthChina Sea
下载PDF
Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media 被引量:11
20
作者 Jiang Guancheng Li Yingying Zhang Min 《Petroleum Science》 SCIE CAS CSCD 2013年第4期515-527,共13页
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent... The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance. 展开更多
关键词 gas-wetting fluorocarbon copolymer contact angle capillary pressure surface free energy surface property fluid flow in porous media
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部