Aim A capillary zone electrophoretic method (CZE) was used to determine the interactions between natural products and thrombin. Methods Samples containing natural products and thrombin at various ratios were incubat...Aim A capillary zone electrophoretic method (CZE) was used to determine the interactions between natural products and thrombin. Methods Samples containing natural products and thrombin at various ratios were incubated at 25 ℃ and then were separated by CZE with Tris-acetate buffer at pH 7.2. Each run could be accomplished within 5 min. Results In CZE, the peak width broadened due to the affinity interaction between natural products and thrombin. Compared with positive and negative control, the natural products (CB-1, CB-2) from Coreopsis tinctoria Nuttt. interacted with thrombin; CB-3 from Coreopsis tinctoria Nuttt. and HC-1, HC-2, HC-3 from Cistanche deserticola Ma. did not bind to thrombin. Both qualification and quantification characterizations of the binding were determined. Conclusion The established method is capable of sensitive and fast determination of natural products and thrombin interactions, it can be employed as an alternative method.展开更多
High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore...High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore the fluid flow and the associated element mobility during deep subduction and exhumation of the continental crust,we investigated the major and trace elements of Ti-rich minerals.Additionally,U–Pb dating,trace element contents,and Lu–Hf isotopic composition of zircon grains in the UHP eclogite and associated rutile-quartz veins were examined in the North Qaidam UHP metamorphic belt,Yuka terrane.The zircon grains in the rutile-quartz veins have unzoned or weak oscillatory zonings,and show low Th/U ratios,steep chondrite-normalized patterns of heavy rare earth elements(HREEs),and insignificant negative Eu anomalies,indicating their growth in metamorphic fluids.These zircon grains formed in 4313 Ma,which is consistent with the 4322 Ma age of the host eclogite.As for the zircons in the rutile-quartz veins,they showed steep HREE patterns on one hand,and were different from the zircons present in the host eclogite on the other.This demonstrates that their formation might have been related to the breakdown of the early stage of garnet,which corresponds to the abundance of fluids during the early exhumation stage.The core-rim profile analyses of rutile recorded a two-stage rutile growth across a large rutile grain;the rutile core has higher Nb,Ta,W,and Zr contents and lower Nb/Ta ratios than the rim,indicating that the rutile domains grew in different metamorphic fluids from the core towards the rim.The significant enrichment of high field strength elements(HFSEs)in the rutile core suggests that the peak fluids have high solubility and transportation capacity of these HFSEs.Furthermore,variations in the Nb vs.Cr trends in rutile indicate a connection of rutile to mafic protolith.The zircon grains from both the rutile-quartz veins and the host eclogite have similar Hf isotopic compositions,indicating that the vein-forming fluids are internally derived from the host eclogite.These fluids accumulated in the subduction channel and were triggered by local dehydration of the deeply subducted eclogite during the early exhumation conditions.展开更多
As demonstrated by a great amount of geologic and experimental evidences, RE of rock systems may be mobilized during fluid-rock interaction when solutions are rich in F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4...As demonstrated by a great amount of geologic and experimental evidences, RE of rock systems may be mobilized during fluid-rock interaction when solutions are rich in F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, though little has been known about the mobilizing mechanism of these anions or ligands. The fractionation of RE resulted from hydrothermal alterations, i. e., fluid-rock interactions, are distinctive. One set of field data implies the preferential mobility of the LRE, while another set of field observations demonstrates the dominant mobilization of the HRE, and some theoretical prediction is not consistent with the field evidence. The Eu anomalies caused by fluid-rock interaction are complex and compelling explanation is not available due to inadequate experimental approaches. To know the exact behavior of RE during fluid-rock interaction and to solve the contradiction between some theoretical predictions and field observations, the following works remain to be done: (1) experimental investigations of RE mobility and fractionation as a function of fluid chemistry, e.g., the activity of F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, etc.; (2) experimental determination of RE mobility and fractionation as a function of T, P, pH, E h and water/rock ratios; (3) investigation of the mechanism and the controlling factors of RE partitioning between hydrothermal minerals and fluids. It was demonstrated that RE mobility is a potentially useful method for exploration.展开更多
The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with ...The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.展开更多
To improve current understanding of the water cycle,energy partitioning and CO2 exchange over hilly zone vegetative land surfaces in the subtropical monsoon environment of southern China,a long-term field experiment o...To improve current understanding of the water cycle,energy partitioning and CO2 exchange over hilly zone vegetative land surfaces in the subtropical monsoon environment of southern China,a long-term field experiment observatory was set up at Ningxiang,eastern Hunan Province.This paper presents a preliminary analysis of the field observations at the observatory collected from August to November 2012.Results show that significant diurnal variations in soil temperature occur only in shallow soil layers(0.05,0.10,and 0.20 m),and that heavy rainfall affects soil moisture in the deep layers(≥ 0.40 m).During the experimental period,significant diurnal variations in albedo,radiation components,energy components,and CO2 flux were observed,but little seasonal variation.Strong photosynthesis in the vegetation canopy enhanced the CO2 absorption and the latent heat released in daylight hours;Latent heat of evaporation was the main consumer of available energy in late summer.Because the field experiment data are demonstrably reliable,the observatory will provide reliable long-term measurements for future investigations of the land-atmosphere interaction over hilly land surfaces in the subtropical monsoon region of southern China.展开更多
The interactions between amnesic red-tide toxin, domoic acid (DA) and 14mer double-stranded DNA (dsDNA with three kinds of sequences) were studied by capillary zone electrophoresis (CZE). For the dsDNA with a sequenc...The interactions between amnesic red-tide toxin, domoic acid (DA) and 14mer double-stranded DNA (dsDNA with three kinds of sequences) were studied by capillary zone electrophoresis (CZE). For the dsDNA with a sequence of 5'-CCCCCTATACCCGC-3', the amount of free dsDNA decreases with the increase of added DA; and the signal of DA-dsDNA complex was observed. Meanwhile, the other two dsDNAs, 5'-(C)12GC-3' and 5'-(AT)7-3', the existence of DA could not lead to the change of dsDNA signal and indicated that there is no interaction between DA and these two dsDNAs.展开更多
Capillary zone electrophoresis (CZE) was applied to study the interaction between netropsin and a 14mer double stranded DNA (dsDNA). The binding constant of this interaction calculated from Scatchard plot was (1.070....Capillary zone electrophoresis (CZE) was applied to study the interaction between netropsin and a 14mer double stranded DNA (dsDNA). The binding constant of this interaction calculated from Scatchard plot was (1.070.10)×105 (mol/L)-1. The binding stoichiometry was 1:1. The use of polyacrylamide coated capillary showed better effect in the analysis of DNA than noncoated capillary.展开更多
Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when t...Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.展开更多
Rare earths in ores, altered and unaltered sericite phyllite, altered and unaltered dacite porphyry were determined in order to examine behaviors of rare earths in hydrothermal alteration associating with ore-forming ...Rare earths in ores, altered and unaltered sericite phyllite, altered and unaltered dacite porphyry were determined in order to examine behaviors of rare earths in hydrothermal alteration associating with ore-forming processes of Yinshan deposit. It is not sufficient to show the mobility only by the absolute abundance of trace elements changes before and after alteration. This can simply result from dilution or concentration if other elements are added to or removed from the rock. As shown by that in Yinshan deposit, less than 20% of the increment of RE was caused by the 'condensed' of leaching some of major elements (e.g. Si, Na) from the rock. The principal factor which should be responsible for the higher contents of RE in altered rock is the addition of RE into the rock by hydrothermal fluids. Eu is selectively leached from the altered sericite phyllite by a mild acidity and reducing fluid which is characterized by much lower LRE/HRE ratio and a large positive Eu anomaly. A major effect on the RE patterns is the tendency to develop relatively flatter chondrite-normalized patterns. The RE characteristics may be used to distinguish between small and large ore bodies at a later stage of exploration.展开更多
The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity s...The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity since 1962 after the impoundment of the Shivajisagar Reservoir behind the Koyna Dam.展开更多
In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility ...In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.展开更多
Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induc...Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induced longshore currents were modeled by shallow water equation.Water wave provided the radiation stress gradients to drive current.Wave and longshore current interactions were considered by cycling the wave and longshore current models to a steady state.The experiments for regular and irregular breaking wave induced longshore currents by Hamilton and Ebersole (2001) and Reniers and Battjes (1997) were simulated.The numerical results indicate that the present models are effective for simulating the interaction of wave and breaking wave induced longshore currents,and the numerically simulated longshore current at wave breaking point considering wave and longshore current interaction show some disagreement with those neglecting the wave-current interaction,and the breaking wave induced longshore current effect on wave transformation is not obvious.展开更多
T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions ...T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment.展开更多
Facilitated by the high-throughput sequencing(HTS)technique,the importance of protists to aquatic systems has been widely acknowledged in the last decade.However,information of protistan biotic interactions and season...Facilitated by the high-throughput sequencing(HTS)technique,the importance of protists to aquatic systems has been widely acknowledged in the last decade.However,information of protistan biotic interactions and seasonal dynamics is much less known in the coast ecosystem with intensive anthropic disturbance.In this study,year-round changes of protist community composition and diversity in the coastal water of Yantai,a city along the northern Yellow Sea in China,were investigated using HTS for the V4 region of 18S rDNA.The interactions among protist groups were also analyzed using the co-occurrence network.Data analyses showed that Alveolata,Chlorophyta,and Stramenopiles are the most dominant phytoplanktonic protists in the investigated coastal area.The community composition displayed strong seasonal variation.The abundant families Dino-Group-I-Clade-1 and Ulotrichales_X had higher proportions in spring and summer,while Bathycoccaceae exhibited higher ratios in autumn and winter.Alpha diversities(Shannon and Simpson)were the highest in autumn and the lowest in spring(ANOVA test,P<0.05).Nutrients(SiO42−,PO43−),total organic carbon(TOC),and pH seemed to drive the variation of alpha diversity,while temperature,PO43−and TON were the most significant factors influencing the whole protist community.Co-variance network analyses reveal frequent co-occurrence events among ciliates,chlorophytes and dinoflagellate,suggesting biotic interactions have been induced by predation,parasitism and mixotrophy.展开更多
Reaction textures and fluid inclusions in the -2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses (Central Zone of the Limpopo Complex) suggest that the formation of the...Reaction textures and fluid inclusions in the -2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses (Central Zone of the Limpopo Complex) suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750--800 ℃ and 5.5--6.2 kbar, partial melting, and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650--700 ℃. These processes caused local variations of water and alkali activity in the fluids, resulting in various mineral assemblages within the dehydration zone. The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO2-(K, Na)Cl fluids at 750 and 800 ℃ and 5.5 kbar. It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K, Na)CI fluids is accompanied by partial melting at 750--800 ℃. Orthopyroxene-bearing assemblages are characteristic for temperature 800 ℃ and are stable in equilibrium with fluids with low salt concentrations, while salt-rich fluids produce clinopyroxene-bearing assemblages. These observations are in good agreement with the petrological data on the dehydration zones within the Sand River olthogneisses.展开更多
On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collec...On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.展开更多
Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of...Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehicle load and water pressure.展开更多
Two 17-mer dsDNA with different sequence characteristics were designed to investigate the binding characteristics of berberine, an anticancer drug with uncertain binding mode, and Hoechst 33258, a model DNA minor groo...Two 17-mer dsDNA with different sequence characteristics were designed to investigate the binding characteristics of berberine, an anticancer drug with uncertain binding mode, and Hoechst 33258, a model DNA minor groove binder, with dsDNA, respectively by the capillary zone electrophoresis (CZE). Kenndler model analysis revealed that Hoechst 33258 exhibited intermediate affinity with dsDNA, while there was only low affinity and some weak binding preference for AATT-containing to GGCC-containing dsDNA for berberine.展开更多
文摘Aim A capillary zone electrophoretic method (CZE) was used to determine the interactions between natural products and thrombin. Methods Samples containing natural products and thrombin at various ratios were incubated at 25 ℃ and then were separated by CZE with Tris-acetate buffer at pH 7.2. Each run could be accomplished within 5 min. Results In CZE, the peak width broadened due to the affinity interaction between natural products and thrombin. Compared with positive and negative control, the natural products (CB-1, CB-2) from Coreopsis tinctoria Nuttt. interacted with thrombin; CB-3 from Coreopsis tinctoria Nuttt. and HC-1, HC-2, HC-3 from Cistanche deserticola Ma. did not bind to thrombin. Both qualification and quantification characterizations of the binding were determined. Conclusion The established method is capable of sensitive and fast determination of natural products and thrombin interactions, it can be employed as an alternative method.
基金funded by the Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan) and China Geological Survey (Grant Nos. 12120113032800, 21201011000150004, DD20190069)
文摘High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore the fluid flow and the associated element mobility during deep subduction and exhumation of the continental crust,we investigated the major and trace elements of Ti-rich minerals.Additionally,U–Pb dating,trace element contents,and Lu–Hf isotopic composition of zircon grains in the UHP eclogite and associated rutile-quartz veins were examined in the North Qaidam UHP metamorphic belt,Yuka terrane.The zircon grains in the rutile-quartz veins have unzoned or weak oscillatory zonings,and show low Th/U ratios,steep chondrite-normalized patterns of heavy rare earth elements(HREEs),and insignificant negative Eu anomalies,indicating their growth in metamorphic fluids.These zircon grains formed in 4313 Ma,which is consistent with the 4322 Ma age of the host eclogite.As for the zircons in the rutile-quartz veins,they showed steep HREE patterns on one hand,and were different from the zircons present in the host eclogite on the other.This demonstrates that their formation might have been related to the breakdown of the early stage of garnet,which corresponds to the abundance of fluids during the early exhumation stage.The core-rim profile analyses of rutile recorded a two-stage rutile growth across a large rutile grain;the rutile core has higher Nb,Ta,W,and Zr contents and lower Nb/Ta ratios than the rim,indicating that the rutile domains grew in different metamorphic fluids from the core towards the rim.The significant enrichment of high field strength elements(HFSEs)in the rutile core suggests that the peak fluids have high solubility and transportation capacity of these HFSEs.Furthermore,variations in the Nb vs.Cr trends in rutile indicate a connection of rutile to mafic protolith.The zircon grains from both the rutile-quartz veins and the host eclogite have similar Hf isotopic compositions,indicating that the vein-forming fluids are internally derived from the host eclogite.These fluids accumulated in the subduction channel and were triggered by local dehydration of the deeply subducted eclogite during the early exhumation conditions.
文摘As demonstrated by a great amount of geologic and experimental evidences, RE of rock systems may be mobilized during fluid-rock interaction when solutions are rich in F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, though little has been known about the mobilizing mechanism of these anions or ligands. The fractionation of RE resulted from hydrothermal alterations, i. e., fluid-rock interactions, are distinctive. One set of field data implies the preferential mobility of the LRE, while another set of field observations demonstrates the dominant mobilization of the HRE, and some theoretical prediction is not consistent with the field evidence. The Eu anomalies caused by fluid-rock interaction are complex and compelling explanation is not available due to inadequate experimental approaches. To know the exact behavior of RE during fluid-rock interaction and to solve the contradiction between some theoretical predictions and field observations, the following works remain to be done: (1) experimental investigations of RE mobility and fractionation as a function of fluid chemistry, e.g., the activity of F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, etc.; (2) experimental determination of RE mobility and fractionation as a function of T, P, pH, E h and water/rock ratios; (3) investigation of the mechanism and the controlling factors of RE partitioning between hydrothermal minerals and fluids. It was demonstrated that RE mobility is a potentially useful method for exploration.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(Project number 20299035,20035010,20275039)Pilot of Knowledge Innovation Program of the Chinese Academy of Science(KSCX 2-3-02-02)on the above work.
文摘The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA05110102)the National Natural Science Foundation of China (Grant No.41075062)the National Basic Research Program of China (Grant No. 2010CB951001)
文摘To improve current understanding of the water cycle,energy partitioning and CO2 exchange over hilly zone vegetative land surfaces in the subtropical monsoon environment of southern China,a long-term field experiment observatory was set up at Ningxiang,eastern Hunan Province.This paper presents a preliminary analysis of the field observations at the observatory collected from August to November 2012.Results show that significant diurnal variations in soil temperature occur only in shallow soil layers(0.05,0.10,and 0.20 m),and that heavy rainfall affects soil moisture in the deep layers(≥ 0.40 m).During the experimental period,significant diurnal variations in albedo,radiation components,energy components,and CO2 flux were observed,but little seasonal variation.Strong photosynthesis in the vegetation canopy enhanced the CO2 absorption and the latent heat released in daylight hours;Latent heat of evaporation was the main consumer of available energy in late summer.Because the field experiment data are demonstrably reliable,the observatory will provide reliable long-term measurements for future investigations of the land-atmosphere interaction over hilly land surfaces in the subtropical monsoon region of southern China.
文摘The interactions between amnesic red-tide toxin, domoic acid (DA) and 14mer double-stranded DNA (dsDNA with three kinds of sequences) were studied by capillary zone electrophoresis (CZE). For the dsDNA with a sequence of 5'-CCCCCTATACCCGC-3', the amount of free dsDNA decreases with the increase of added DA; and the signal of DA-dsDNA complex was observed. Meanwhile, the other two dsDNAs, 5'-(C)12GC-3' and 5'-(AT)7-3', the existence of DA could not lead to the change of dsDNA signal and indicated that there is no interaction between DA and these two dsDNAs.
基金This project is supported by NNSFC (grant number 20035010). The authors gratefully acknowledge this financial support.
文摘Capillary zone electrophoresis (CZE) was applied to study the interaction between netropsin and a 14mer double stranded DNA (dsDNA). The binding constant of this interaction calculated from Scatchard plot was (1.070.10)×105 (mol/L)-1. The binding stoichiometry was 1:1. The use of polyacrylamide coated capillary showed better effect in the analysis of DNA than noncoated capillary.
基金supported by the National Natural Science Foundation of China (Nos. 10972072, 50679022, and 10872052)National Basic Research Program of China (No. 2007CB714104)the state Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (No. 2009585912)
文摘Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.
文摘Rare earths in ores, altered and unaltered sericite phyllite, altered and unaltered dacite porphyry were determined in order to examine behaviors of rare earths in hydrothermal alteration associating with ore-forming processes of Yinshan deposit. It is not sufficient to show the mobility only by the absolute abundance of trace elements changes before and after alteration. This can simply result from dilution or concentration if other elements are added to or removed from the rock. As shown by that in Yinshan deposit, less than 20% of the increment of RE was caused by the 'condensed' of leaching some of major elements (e.g. Si, Na) from the rock. The principal factor which should be responsible for the higher contents of RE in altered rock is the addition of RE into the rock by hydrothermal fluids. Eu is selectively leached from the altered sericite phyllite by a mild acidity and reducing fluid which is characterized by much lower LRE/HRE ratio and a large positive Eu anomaly. A major effect on the RE patterns is the tendency to develop relatively flatter chondrite-normalized patterns. The RE characteristics may be used to distinguish between small and large ore bodies at a later stage of exploration.
基金conducted under the project sponsored by the Ministry of Earth Sciences,Govt.of India[Project Code-Mo ES/P.O.(Seismo)/1(374)/2019]
文摘The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity since 1962 after the impoundment of the Shivajisagar Reservoir behind the Koyna Dam.
基金The National Natural Science Foundation of China(No. 51008071)the Natural Science Foundation fo Jiangsu Province(No. BK2010413)Teaching & Research Excellence Grant for Young Faculty Members at Southeast University,the US National Science Foundation (No. CMS-0223971,CMS-0329416)
文摘In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.
基金The National Natural Science Foundation of China under contract Nos 50839001,51179025 and 50709004the Specialized Research Fund for the Doctoral Program of Higher Education of China under contract No.20070141032
文摘Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induced longshore currents were modeled by shallow water equation.Water wave provided the radiation stress gradients to drive current.Wave and longshore current interactions were considered by cycling the wave and longshore current models to a steady state.The experiments for regular and irregular breaking wave induced longshore currents by Hamilton and Ebersole (2001) and Reniers and Battjes (1997) were simulated.The numerical results indicate that the present models are effective for simulating the interaction of wave and breaking wave induced longshore currents,and the numerically simulated longshore current at wave breaking point considering wave and longshore current interaction show some disagreement with those neglecting the wave-current interaction,and the breaking wave induced longshore current effect on wave transformation is not obvious.
文摘T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment.
基金the National Natural Science Foundation of China(Nos.31672251,31772413)the Youth Innovation Promotion Association,CAS(No.2019216)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050303)the Key Research Project of Frontier Science,CAS(No.QYZDBSSW-DQC013-1).
文摘Facilitated by the high-throughput sequencing(HTS)technique,the importance of protists to aquatic systems has been widely acknowledged in the last decade.However,information of protistan biotic interactions and seasonal dynamics is much less known in the coast ecosystem with intensive anthropic disturbance.In this study,year-round changes of protist community composition and diversity in the coastal water of Yantai,a city along the northern Yellow Sea in China,were investigated using HTS for the V4 region of 18S rDNA.The interactions among protist groups were also analyzed using the co-occurrence network.Data analyses showed that Alveolata,Chlorophyta,and Stramenopiles are the most dominant phytoplanktonic protists in the investigated coastal area.The community composition displayed strong seasonal variation.The abundant families Dino-Group-I-Clade-1 and Ulotrichales_X had higher proportions in spring and summer,while Bathycoccaceae exhibited higher ratios in autumn and winter.Alpha diversities(Shannon and Simpson)were the highest in autumn and the lowest in spring(ANOVA test,P<0.05).Nutrients(SiO42−,PO43−),total organic carbon(TOC),and pH seemed to drive the variation of alpha diversity,while temperature,PO43−and TON were the most significant factors influencing the whole protist community.Co-variance network analyses reveal frequent co-occurrence events among ciliates,chlorophytes and dinoflagellate,suggesting biotic interactions have been induced by predation,parasitism and mixotrophy.
基金supported by Russian Foundation for Basic Research(project 10-05-00040 to OGS)Russian President Grants for Young Scientists(MD-222.2012.5 to OGS)+1 种基金grant from the National Science Foundation of South Africa(GUN:20531 92 to DDvR)University of Johannesburg as a part of the Russian South African scientific collaboration
文摘Reaction textures and fluid inclusions in the -2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses (Central Zone of the Limpopo Complex) suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750--800 ℃ and 5.5--6.2 kbar, partial melting, and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650--700 ℃. These processes caused local variations of water and alkali activity in the fluids, resulting in various mineral assemblages within the dehydration zone. The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO2-(K, Na)Cl fluids at 750 and 800 ℃ and 5.5 kbar. It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K, Na)CI fluids is accompanied by partial melting at 750--800 ℃. Orthopyroxene-bearing assemblages are characteristic for temperature 800 ℃ and are stable in equilibrium with fluids with low salt concentrations, while salt-rich fluids produce clinopyroxene-bearing assemblages. These observations are in good agreement with the petrological data on the dehydration zones within the Sand River olthogneisses.
基金This study was supported by the National Key Project "Study of the Natural Gas Fault System in the Tancheng-Lujiang Fault Belt (No. 95-101-01)" of the Ninth Five-Year Plan Period and the National Natural Science Foundation of China Grant 48970172.
文摘On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.
基金the National Natural Science Foundation of China(Nos.51708457,11790283,and 51978587)the Fund from State Key Laboratory of Traction Power(2019TPL-T16)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)the 111 Project(Grant No.B16041)。
文摘Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehicle load and water pressure.
基金NNSF of China (No. 20475031) National "863" Project (No. 2002AA2Z2004) Postdoctoral Science Foundation of China (No. 20040350303).
文摘Two 17-mer dsDNA with different sequence characteristics were designed to investigate the binding characteristics of berberine, an anticancer drug with uncertain binding mode, and Hoechst 33258, a model DNA minor groove binder, with dsDNA, respectively by the capillary zone electrophoresis (CZE). Kenndler model analysis revealed that Hoechst 33258 exhibited intermediate affinity with dsDNA, while there was only low affinity and some weak binding preference for AATT-containing to GGCC-containing dsDNA for berberine.