The indirect boundary element method(IBEM)is applied to investigate the scattering of elastic waves around a 3-D sedimentary basin filled with fluid-saturated poroelastic medium.Based on this method,the free field and...The indirect boundary element method(IBEM)is applied to investigate the scattering of elastic waves around a 3-D sedimentary basin filled with fluid-saturated poroelastic medium.Based on this method,the free field and scattered field can be solved according to the boundary conditions.And the numerical accuracy has been verified.The effects of parameters on elastic wave scattering are studied,such as boundary condition,incident frequency,incident angle and porosity of medium.Numerical results illustrate that the amplification effect of surface displacement near poroelastic sedimentary basin is notable.In addition,for the case of large porosity the drainage condition has a significant impact on the response amplitude.Due to the fluid exchange at the interface under the drained condition,the displacement amplitude can be much larger than that under the undrained condition in present study.The study can provide a theoretical basis for the anti-seismic design of engineering structures located in sedimentary basin.展开更多
This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a freque...This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a frequency range from 10 to 3000 Hz. The structure is backed with a rigid wall which can either be Aluminium or Al-Alloy used in aeronautic or automobile. The wave propagation in porous media is addressed using Johnson Champoux Allard model (JCA). The FEM model developed using COMSOL Multiphysics software makes it possible to predict the acoustic absorption coefficient in multilayer microperforated panels (M-MPPs) and sandwich structure. It is shown that, when structures made by MPPs or sandwich materials are submitted to high temperature, the absorption performance of the structure is strongly modified in terms of amplitude and width of the bandgap. For application in sever environment (noise reduction in engines aircrafts), Temperature is one of the parameters that will most influence the absorption performance of the structure. However, for application in the temperature domain smaller than 50?C (automotive applications for example), the effect of temperature is not significant on absorption performance of the structure.展开更多
基金National Natural Science Foundation of China(No.51878434)Tianjin Key Research Program of Application Foundation Advanced Technology(No.18JCZDJC39200)Tianjin City Science and Technology Support Program(No.17YFZCSF01140).
文摘The indirect boundary element method(IBEM)is applied to investigate the scattering of elastic waves around a 3-D sedimentary basin filled with fluid-saturated poroelastic medium.Based on this method,the free field and scattered field can be solved according to the boundary conditions.And the numerical accuracy has been verified.The effects of parameters on elastic wave scattering are studied,such as boundary condition,incident frequency,incident angle and porosity of medium.Numerical results illustrate that the amplification effect of surface displacement near poroelastic sedimentary basin is notable.In addition,for the case of large porosity the drainage condition has a significant impact on the response amplitude.Due to the fluid exchange at the interface under the drained condition,the displacement amplitude can be much larger than that under the undrained condition in present study.The study can provide a theoretical basis for the anti-seismic design of engineering structures located in sedimentary basin.
文摘This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a frequency range from 10 to 3000 Hz. The structure is backed with a rigid wall which can either be Aluminium or Al-Alloy used in aeronautic or automobile. The wave propagation in porous media is addressed using Johnson Champoux Allard model (JCA). The FEM model developed using COMSOL Multiphysics software makes it possible to predict the acoustic absorption coefficient in multilayer microperforated panels (M-MPPs) and sandwich structure. It is shown that, when structures made by MPPs or sandwich materials are submitted to high temperature, the absorption performance of the structure is strongly modified in terms of amplitude and width of the bandgap. For application in sever environment (noise reduction in engines aircrafts), Temperature is one of the parameters that will most influence the absorption performance of the structure. However, for application in the temperature domain smaller than 50?C (automotive applications for example), the effect of temperature is not significant on absorption performance of the structure.