The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip...The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dyna...For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shockabsorber and implemented in MATLAB software package. Using the model it is possible to evaluate theimportance of different factors for design of the shock absorber. In the meantime, the key-modelmachine is designed for coupling dynamic test. Comparisons with experimental results confirm thevalidity of the model. So the CAD/CAE software has been developed in MATLAB for design andexperimental test of the new coupling shock absorber.展开更多
Based on computational fluid dynamics (CFD)/computational eleetromagnetics method (CEM) coupling method and surrogate model optimization techniques, an integration design method about aerodynamic/stealth character...Based on computational fluid dynamics (CFD)/computational eleetromagnetics method (CEM) coupling method and surrogate model optimization techniques, an integration design method about aerodynamic/stealth characteristics of airfoil is established. The O-type body-fitted and orthogonal grid around airfoil is first generated by using the Poisson equations, in which the points per wave and the normal range satisfy the aerodynamic and electromagnetic calculation accuracy requirement. Then the aerodynamic performance of airfoil is calculated by sol- ving the Navier-Stokes (N-S) equations with Baldwin-Lomax (B-L) turbulence model. The stealth characteristics of airfoil are simulated by using finite volume time domain (FVTD) method based on the Maxwell's equations, Steger-Warming flux splitting and the third-order MUSCL scheme. In addition, based upon the surrogate model optimization technique with full factorial design (FFD) and radial basis function (RBF), an integration design about aerodynamic/stealth characteristics of rotor airfoil is conducted by employing the CFD/CEM coupling meth- od. The aerodynamic/stealth characteristics of NACA series airfoils with different maximum thickness and camber combinations are discussed. Finally, by choosing suitable lift-to-drag ratio and radar cross section (RCS) ampli- tudes of rotor airfoil in four important scattering regions as the objective function and constraint, the compromised airfoil with high lift-to-drag ratio and low scattering characteristics is designed via systemic and comprehensive ana- lyses.展开更多
A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using ...A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.展开更多
As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed...As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.展开更多
Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of ...Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure.展开更多
Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several...Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several types of DMPM, has been of interest recently. The unique coupling characteristics of STPM-DMPM are beneficial to improving system performance, but these same characteristics increase the difficulties of control. Now there has been little research about the control of STPM-DMPM, and this has hindered its practical application. Based on a mathematical model of STPM-DMPM, the coupling characteristics and the merits and demerits of such devices are analyzed as applied to a hybrid system. The control strategies for improving the disadvantages and for utilizing the advantage of coupling are researched. In order to weaken the interaction effect of torque outputs in the inner motor and the outer motor that results from coupling in STPM-DMPM, a decoupling control method based on equivalent current control is proposed, and independent torque control for the inner motor and outer motor is achieved. In order to solve address the problem of adequately utilization of coupling, minimizing the overall copper loss of the inner motor and the outer motor of STPM-DMPM is taken as the optimization objective for optimal control, and the purpose of utilizing the coupling adequately and reasonably is achieved. The verification tests of the proposed decoupling control and optimal control strategies are carried out on a prototype STPM-DMPM, and the experimental results show that the interaction effect of torque outputs in the inner motor and the outer motor can be markedly weakened through use of the control method. The overall copper loss of the inner motor and the outer motor can be markedly reduced through use of the optimal control method, while the power output remains unchanged. A breakthrough in the control problem of STPM-DMPM is accomplished by combining the control methods. Good performance in the control of STPM-DMPM will enhance its practicality, particularly as applied to hybrid systems.展开更多
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin...The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.展开更多
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec...In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.展开更多
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated...Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.展开更多
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim...The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.展开更多
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con...The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.展开更多
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami...The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.展开更多
When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The stru...When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.展开更多
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and p...As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.展开更多
About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity...About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water. In this paper, based on the fluid-solid coupling theory, we built the stress-seepage coupling model for rock, then we combined with an example of water-inrush caused by fault, studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics, analyzed the change rule of shear stress, vertical stress, plastic area and water pressure for stope with a fault, and estimated the water-inrush risk at the different distances between working faces and the fault. The numerical simula- tion results indicate that: (1) the water-inrush risk will grow as the decrease of the distance between working face and the fault; (2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush.展开更多
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hyd...Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.展开更多
The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analy...The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope.展开更多
In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h...In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12272217)。
文摘The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
基金This project is supported by National Defense Science Foundation of China(No.00J16.2.5DZ0502)and Provincial Natural Science Foundation of Guangxi of China(No.0141042).
文摘For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shockabsorber and implemented in MATLAB software package. Using the model it is possible to evaluate theimportance of different factors for design of the shock absorber. In the meantime, the key-modelmachine is designed for coupling dynamic test. Comparisons with experimental results confirm thevalidity of the model. So the CAD/CAE software has been developed in MATLAB for design andexperimental test of the new coupling shock absorber.
文摘Based on computational fluid dynamics (CFD)/computational eleetromagnetics method (CEM) coupling method and surrogate model optimization techniques, an integration design method about aerodynamic/stealth characteristics of airfoil is established. The O-type body-fitted and orthogonal grid around airfoil is first generated by using the Poisson equations, in which the points per wave and the normal range satisfy the aerodynamic and electromagnetic calculation accuracy requirement. Then the aerodynamic performance of airfoil is calculated by sol- ving the Navier-Stokes (N-S) equations with Baldwin-Lomax (B-L) turbulence model. The stealth characteristics of airfoil are simulated by using finite volume time domain (FVTD) method based on the Maxwell's equations, Steger-Warming flux splitting and the third-order MUSCL scheme. In addition, based upon the surrogate model optimization technique with full factorial design (FFD) and radial basis function (RBF), an integration design about aerodynamic/stealth characteristics of rotor airfoil is conducted by employing the CFD/CEM coupling meth- od. The aerodynamic/stealth characteristics of NACA series airfoils with different maximum thickness and camber combinations are discussed. Finally, by choosing suitable lift-to-drag ratio and radar cross section (RCS) ampli- tudes of rotor airfoil in four important scattering regions as the objective function and constraint, the compromised airfoil with high lift-to-drag ratio and low scattering characteristics is designed via systemic and comprehensive ana- lyses.
文摘A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.
基金Supported by the National Key Basic Research Program of China(No.2014CB046405)
文摘As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.
基金the National Natural Science Foundation of China(10072005)Beijing Educational Committee(99LG-11)Beijing Natural Science(3002002)Foundation
文摘Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure.
基金Supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2011AA11A238)
文摘Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several types of DMPM, has been of interest recently. The unique coupling characteristics of STPM-DMPM are beneficial to improving system performance, but these same characteristics increase the difficulties of control. Now there has been little research about the control of STPM-DMPM, and this has hindered its practical application. Based on a mathematical model of STPM-DMPM, the coupling characteristics and the merits and demerits of such devices are analyzed as applied to a hybrid system. The control strategies for improving the disadvantages and for utilizing the advantage of coupling are researched. In order to weaken the interaction effect of torque outputs in the inner motor and the outer motor that results from coupling in STPM-DMPM, a decoupling control method based on equivalent current control is proposed, and independent torque control for the inner motor and outer motor is achieved. In order to solve address the problem of adequately utilization of coupling, minimizing the overall copper loss of the inner motor and the outer motor of STPM-DMPM is taken as the optimization objective for optimal control, and the purpose of utilizing the coupling adequately and reasonably is achieved. The verification tests of the proposed decoupling control and optimal control strategies are carried out on a prototype STPM-DMPM, and the experimental results show that the interaction effect of torque outputs in the inner motor and the outer motor can be markedly weakened through use of the control method. The overall copper loss of the inner motor and the outer motor can be markedly reduced through use of the optimal control method, while the power output remains unchanged. A breakthrough in the control problem of STPM-DMPM is accomplished by combining the control methods. Good performance in the control of STPM-DMPM will enhance its practicality, particularly as applied to hybrid systems.
基金Supported by the National Natural Science Foundation under Grant No.10272034the Doctoral Education Foundation under Grant No.20060217020
文摘The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
基金Supported by National Science&Technology Pillar Program of China during the 12th Five-Year Plan Period(Product Quality Optimization of Precision Strip and R&D for Key Equipment,Grant No.2015BAF30B01)
文摘In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.
基金Project(20080431380) supported by China Postdoctoral Science Foundation
文摘Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.
基金National Natural Science Foundation of People’s Republic of China under Grant Nos.51178011 and 51778386the Key Fundamental Study Development Project of People’s Republic of China under Grant No.2011CB013602。
文摘The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(Grants 20113219110025,20133219110037)the National Natural Science Foundation of China(Grants 11102089,61304137)the Program for New Century Excellent Talents in University(NCET-10-0075)
文摘The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.
文摘The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.
基金Project(51375001) supported by the National Natural Science Foundation of ChinaProject(2013CB035400) supported by the National Basic Research Program of China
文摘When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.
基金supported by the Major National Science and Technology Program(Nos.2008ZX05026-00411 and 2011ZX05026-004-08)the Program for Changjiang Scholars and Innovative Research Team in University(No.RT1086)
文摘As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.
基金Supported by the National Basic Research Program of China (2010CB226800) the National Natural Science Foundation of China (50904065) the Program for New Century Excellent Talents in University (NCET-09-0728)
文摘About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water. In this paper, based on the fluid-solid coupling theory, we built the stress-seepage coupling model for rock, then we combined with an example of water-inrush caused by fault, studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics, analyzed the change rule of shear stress, vertical stress, plastic area and water pressure for stope with a fault, and estimated the water-inrush risk at the different distances between working faces and the fault. The numerical simula- tion results indicate that: (1) the water-inrush risk will grow as the decrease of the distance between working face and the fault; (2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush.
基金Natural Science Foundation of China(Grant No.81960332)Guangxi Provincial Innovation driven Development Project(Grant No.GKAA17204062)+1 种基金Guangxi Provincial Natural Science Foundation(Grant No.2016GXNSFAA380211)Liuzhou Municipal Scientific Research and Technology Development Plan(Grant No.2016C050203)。
文摘Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.
基金the Natural Science Foundation of China(Grant Nos.61701515 and U23B2066)the Nat-ural Science Foundation of Hunan Province,China(Grant No.2021JJ40700)the Research Project of National Uni-versity of Defense Technology(Grant No.ZK22-18).
文摘The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope.
基金appreciate the support of the Key Laboratory of Mechanical Structure Optimization&Material Application Technology of Luzhou(No.SCHYZSA-2022-02)the Scientific Research and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A004)+1 种基金the Key Laboratory of Intelligent Manufacturing of Construction Machinery Project(No.IMCM202103)the Panzhihua Key Laboratory of Advanced Manufacturing Technology Open Fund Project(No.2022XJZD01)。
文摘In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.