期刊文献+
共找到4,475篇文章
< 1 2 224 >
每页显示 20 50 100
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
1
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth thermal insulation Computer simulation technology
下载PDF
Simulation Analysis of Torsion Beam Hydroforming Based on the Fluid-Solid Coupling Method 被引量:2
2
作者 Yu Huang Jian Li +2 位作者 Jiachun Yang Yongdong Peng Weixuan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期139-156,共18页
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hyd... Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam. 展开更多
关键词 fluid-solid coupling Hydraulic expansion Rectangular tube Torsional beam Wall thickness distribution
下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
3
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
Application of the generalized quasi-complementary energy principle to the fluid-solid coupling problem
4
作者 梁立孚 刘宗民 郭庆勇 《Journal of Marine Science and Application》 2009年第1期40-45,共6页
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin... The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived. 展开更多
关键词 fluid-solid coupling elasto-dynamics generalized quasi-complementary energy principle dynamic response
下载PDF
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling 被引量:1
5
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
下载PDF
Fluid-solid coupling numerical simulation of charge process in variable-mass thermodynamic system 被引量:8
6
作者 胡继敏 金家善 严志腾 《Journal of Central South University》 SCIE EI CAS 2012年第4期1063-1072,共10页
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated... Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase. 展开更多
关键词 steam accumulator variable-mass control valve fluid-solid coupling numerical simulation
下载PDF
Fully fluid-solid coupling dynamic model for seismic response of underground structures in saturated soils 被引量:6
7
作者 Li Liang Jiao Hongyun +1 位作者 Du Xiuli Shi Peixin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期257-268,共12页
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim... The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure. 展开更多
关键词 UNDERGROUND structure saturated SOIL SEISMIC RESPONSE fluid-solid coupling dynamic model user-defined ELEMENT
下载PDF
FLUID-SOLID COUPLING MATHEMATICAL MODEL OF CONTAMINANT TRANSPORT IN UNSATURATED ZONE AND ITS ASYMPTOTICAL SOLUTION 被引量:4
8
作者 薛强 梁冰 +1 位作者 刘晓丽 李宏艳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第12期1475-1485,共11页
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami... The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory. 展开更多
关键词 contaminant transport unsaturated zone numerical model fluid-solid coupling interaction asymptotical solution
下载PDF
Measurements of electron-phonon coupling factor and interfacial thermal resistance of metallic nano-films using a transient thermoreflectance technique 被引量:3
9
作者 王海东 马维刚 +2 位作者 过增元 张兴 王玮 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期209-216,共8页
Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron ph... Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals. 展开更多
关键词 transient thermoreflectance technique electron-phonon coupling factor interracial thermal resistance genetic algorithms
下载PDF
Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments 被引量:3
10
作者 程远方 李令东 +1 位作者 S. MAHMOOD 崔青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1421-1432,共12页
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and p... As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS. 展开更多
关键词 gas hydrate bearing sediment wellbore stability fluid-solid coupling mechanical property drilling fluid
下载PDF
Numerical simulation on fault water-inrush based on fluid-solid coupling theory 被引量:3
11
作者 HUANG Han-fu MAO Xian-biao +1 位作者 YAO Bang-hua PU Hai 《Journal of Coal Science & Engineering(China)》 2012年第3期291-296,共6页
About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity... About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water. In this paper, based on the fluid-solid coupling theory, we built the stress-seepage coupling model for rock, then we combined with an example of water-inrush caused by fault, studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics, analyzed the change rule of shear stress, vertical stress, plastic area and water pressure for stope with a fault, and estimated the water-inrush risk at the different distances between working faces and the fault. The numerical simula- tion results indicate that: (1) the water-inrush risk will grow as the decrease of the distance between working face and the fault; (2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush. 展开更多
关键词 FAULT fluid-solid coupling water inrush numerical simulation
下载PDF
Core and blanket thermal-hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM 被引量:8
12
作者 Bin Deng Yong Cui +5 位作者 Jin-Gen Chen Long He Shao-Peng Xia Cheng-Gang Yu Fan Zhu Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第9期1-15,共15页
In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released... In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket. 展开更多
关键词 Molten salt fast reactor Core and blanket thermal-hydraulic analysis Neutronics and thermal hydraulics coupling
下载PDF
Fluid-Structure Coupled Analysis of the Transient Thermal Stress in an Exhaust Manifold
13
作者 Liang Yi Wen Gang +2 位作者 Nenggui Pan Wangui Wang Shengshuai Mo 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2777-2790,共14页
The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STA... The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress). 展开更多
关键词 Exhaust manifold fluid-structure coupling temperaturefield thermal stress
下载PDF
Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County,China 被引量:2
14
作者 WANG Yan LIU Yan-guang +3 位作者 BIAN Kai ZHANG Hong-liang QIN Shen-jun WANG Xiao-jun 《Journal of Groundwater Science and Engineering》 2020年第4期305-314,共10页
Fracture seepage and heat transfer in the geothermal reservoir of carbonate rocks after the reinjection of low temperature geothermal return water is a complex coupling process,which is also the frontier of geothermal... Fracture seepage and heat transfer in the geothermal reservoir of carbonate rocks after the reinjection of low temperature geothermal return water is a complex coupling process,which is also the frontier of geothermal production and reinjection research.Based on the research of cascade comprehensive development of geothermal resources in Beijing-Tianjin-Hebei(Xian County),the carbonate geothermal reservoir of Wumishan formation in the geothermal field in Xian County is investigated.With the development of the discrete fracture network model and the coupling model of seepage and heat transfer,the numerical solution of seepage field and temperature field with known fracture network is reached using the finite element software COMSOL,and the coupling process of seepage flow and heat in carbonate rocks is revealed.The results show that the distribution of temperature field of fractured rocks in geothermal reservoir of carbonate rocks has strong non-uniformity and anisotropy.The fracture network is interpenetrated,which constitutes the dominant channel of water conduction,and along which the fissure water moves rapidly.Under the influence of convective heat transfer and conductive heat transfer,one of the main factors to be considered in the study of thermal breakthrough is to make the cold front move forward rapidly.When the reinjection and production process continues for a long time and the temperature of the geothermal reservoir on the pumping side drops to a low level,the temperature of bedrocks is still relatively high and continues to supply heat to the fissure water,so that the temperature of the thermal reservoir on the pumping side will not decrease rapidly to the water temperature at the inlet of reinjection,but will gradually decrease after a long period of time,showing an obvious long tail effect.The distribution of fractures will affect the process of seepage and heat transfer in carbonate reservoirs,which should be considered in the study of fluid thermal coupling in carbonate reservoirs. 展开更多
关键词 Carbonate reservoir Geothermal reinjection Fractured rock mass Fluid thermal coupling
下载PDF
Characteristic analysis of mechanical thermal coupling model for bearing rotor system of high-speed train 被引量:1
15
作者 Yongqiang LIU Baosen WANG +2 位作者 Shaopu YANG Yingying LIAO Tao GUO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第9期1381-1398,共18页
Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration a... Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment. 展开更多
关键词 high-speed train coupling dynamic model thermal network method track irregularity(TI) low temperature
下载PDF
Thermal-Fluid-Structure Coupling Analysis of Flexible Corrugated Cryogenic Hose 被引量:1
16
作者 YANG Liang LIU Miao-er +6 位作者 LIU Yun LI Fang-qiu FAN Jia-kun LIU Fu-peng LU Zhao-kuan YANG Jian-ye YAN Jun 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期658-665,共8页
This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corr... This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corrugated hose structure composed of multiple layers of different materials is established and coupled with turbulent LNG flow and heat transfer models in the commercial software ANSYS Workbench.The flow transport behavior,heat transfer across the hose layers,and structural response caused by the flow are analyzed.Parametric studies are performed to evaluate the impacts of inlet flow rate and thermal conductivity of insulation material on the temperature and structural stress of the corrugated hose.The study found that,compared with a regular operating condition,higher inlet flow velocities not only suppress the heat gain of the LNG but also lower the flow-induced structural stress.The insulation layer exhibits excellent performance in maintaining the temperature at the fluid–structure interface,showing little temperature change with respect to material thermal conductivity and ambient temperature.The simulation results may contribute to the research and design of the flexible corrugated cryogenic hoses and provide guidance for safer and more efficient field operations. 展开更多
关键词 flexible corrugated cryogenic hose LNG computational fluid dynamics thermal–fluid–structure coupling
下载PDF
Numerical analysis of flow-thermal coupling in micro-plasma welding pool of thin-wall part 被引量:8
17
作者 Liu Haihua Chen Haojie +2 位作者 Liu Wenji Wang Tianqi Yue Jianfeng 《China Welding》 EI CAS 2018年第2期13-18,共6页
The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is fo... The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is found that because of the obvious effect of heat accumution in cross-section, where the distribution of temperature field area presents trapezoidal inverted approximately in the molten pool and the non-molten pool area presents level. The surface tension, the electromagnetic force and buoyancy are considered for analyzing the effects on the fluid flow of welding-pool. It can be obtained that the surface tension is the main driving force in the welding pool, which is far greater than electromagnetic force and buoyancy. 展开更多
关键词 thin-wall part welding pool flow-thermal coupling driving forces
下载PDF
Numerical Solution for Thermal Elastohydrodynamic Lubrication of Line Contact with Couple Stress Fluid as Lubricant
18
作者 Vishwanath B.Awati Mahesh Kumar N N.M.Bujurke 《Journal of Mechanical Materials and Mechanics Research》 2023年第1期22-35,共14页
In this paper,the detailed analysis of the influence of thermal and non-Newtonian aspects of lubricant(couple stress fluid)on EHL line contact as a function of slide-roll ratio is presented.The novel low complexity FA... In this paper,the detailed analysis of the influence of thermal and non-Newtonian aspects of lubricant(couple stress fluid)on EHL line contact as a function of slide-roll ratio is presented.The novel low complexity FAS(full approximation scheme),of the multigrid scheme,with Jacobi dipole and Gauss Seidel relaxation is used for the solution of coupled equations viz.modified Reynolds equation,film thickness equation and energy equation satisfying appropriate boundary conditions.The analysis reveals the combined influence of non-Newtonian,thermal and slide-roll ratio(of bearing moving with different speeds)on pressure,film thickness and pressure spike covering a wide range of physical parameters of interest.Results show that pressure spike is strongly influenced by thermal,slide-roll ratio and non-Newtonian character of lubricant with negligible effect on the overall pressure distribution.Also,the minimum film thickness is slightly altered and it increases with the increase in the couple stress parameter.These findings confirm the importance of non-Newtonian and thermal effects in the study of EHL. 展开更多
关键词 thermal EHL Slide-roll ratio couple stress fluid Multigrid FAS Non-Newtonian
下载PDF
A new thermomechanical coupled FDEM model for geomaterials considering continuum-discontinuum transitions
19
作者 Zihan Liu Louis Ngai Yuen Wong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4654-4668,共15页
A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials... A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials.This model incorporates a heat conduction model that can accurately calculate the thermal field in continuousediscontinuous transition processes within a finite element framework.A modified contact heat transfer model is also included,which accounts for the entire contact area of discrete bodies.To align with the finite strain theory utilized in the FDEM mechanics module,the TM coupling module in the model is based on the multiplicative decomposition of the deformation gradient.The proposed model has been applied to various scenarios,including heat conduction in both continuous and discontinuous media during transient states,thermal-induced strain and stress,and thermal cracking conditions.The thermal field calculation model and the TM coupling model have been validated by comparing the numerical results with experiment findings and analytical solutions.These numerical cases demonstrate the reliability of the proposed model convincingly,making it suitable for use across a wide range of continuous and discontinuous media. 展开更多
关键词 Finite-discrete element method(FDEM) Thermomechanical(TM)coupling thermal cracking Contact heat transfer GEOMATERIALS
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
20
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
上一页 1 2 224 下一页 到第
使用帮助 返回顶部