期刊文献+
共找到101,572篇文章
< 1 2 250 >
每页显示 20 50 100
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
1
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
下载PDF
Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling
2
作者 Peng Qiao Shuangshuang Lan +1 位作者 Hongbiao Gu Zhengtan Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1381-1399,共19页
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co... Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state. 展开更多
关键词 Underground reservoir fluid-structure coupling numerical simulation pumped storage power station filling and discharge
下载PDF
An Updated Lagrangian Particle Hydrodynamics (ULPH)-NOSBPD Coupling Approach forModeling Fluid-Structure Interaction Problem
3
作者 Zhen Wang Junsong Xiong +3 位作者 Shaofan Li Xin Lai Xiang Liu Lisheng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期491-523,共33页
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro... A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction. 展开更多
关键词 fluid-structure interaction(FSI) updated lagrangian particle hydrodynamics PERIDYNAMICS meshfree method
下载PDF
Application of CFD and FEA Coupling to Predict Structural Dynamic Responses of A Trimaran in Uni-and Bi-Directional Waves
4
作者 LIAO Xi-yu XIA Jin-song +4 位作者 CHEN Zhan-yang TANG Qin ZHAO Nan ZHAO Wei-dong GUI Hong-bin 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期81-92,共12页
To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing... To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations. 展开更多
关键词 CFD-FEA fluid-structure coupling structural responses TRIMARAN bi-directional cross sea
下载PDF
Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells 被引量:2
5
作者 Ruikun Cao Kexuan Sun +8 位作者 Chang Liu Yuhong Mao Wei Guo Ping Ouyang Yuanyuan Meng Ruijia Tian Lisha Xie Xujie Lü Ziyi Ge 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期325-340,共16页
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker... This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit. 展开更多
关键词 Electron-phonon coupling A-site cation engineering Non-radiative recombination
下载PDF
Influence of water coupling coefficient on the blasting effect of red sandstone specimens 被引量:2
6
作者 Yang Li Renshu Yang +1 位作者 Yanbing Wang Dairui Fu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期148-166,共19页
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i... This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent. 展开更多
关键词 Water coupling coefficient Radial uncoupled charge Numerical simulation Fractal dimension
下载PDF
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers 被引量:2
7
作者 Andergachew Mekonnen Berhe Khalil As’ham +2 位作者 Ibrahim Al-Ani Haroldo T.Hattori Andrey E.Miroshnichenko 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期20-32,共13页
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo... Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature. 展开更多
关键词 catenary-shaped field enhancement strong coupling PLASMON EXCITON Rabi splitting
下载PDF
VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING 被引量:11
8
作者 LIU Demin LIU Xiaobing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期40-43,共4页
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are ca... The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible. 展开更多
关键词 fluid-structure coupling Additional quality matrix Vibration Mode
下载PDF
Icariin accelerates bone regeneration by inducing osteogenesisangiogenesis coupling in rats with type 1 diabetes mellitus 被引量:2
9
作者 Sheng Zheng Guan-Yu Hu +2 位作者 Jun-Hua Li Jia Zheng Yi-Kai Li 《World Journal of Diabetes》 SCIE 2024年第4期769-782,共14页
BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e... BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs. 展开更多
关键词 ICARIIN Osteogenesis-angiogenesis coupling Type 1 diabetes mellitus Bone defect Bone regeneration
下载PDF
Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear 被引量:1
10
作者 Aixiang Wu Zhenqi Wang +3 位作者 Zhuen Ruan Raimund Bürger Shaoyong Wang Yi Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期862-876,共15页
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o... Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed. 展开更多
关键词 thickened tailings compression-shear coupling compressive yield stress shear yield stress CONCENTRATION
下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances 被引量:1
11
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth Thermal insulation Computer simulation technology
下载PDF
Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling 被引量:3
12
作者 Xumin GUO Chunliang XIAO +3 位作者 Hui MA Hui LI Xufang ZHANG Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第8期1269-1288,共20页
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ... The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering. 展开更多
关键词 parallel liquid-filled pipe(PLFP) dynamic analysis improved frequency modeling and solution fluid-structure interaction(FSI) structure coupling
下载PDF
Algorithm Selection Method Based on Coupling Strength for Partitioned Analysis of Structure-Piezoelectric-Circuit Coupling
13
作者 Daisuke Ishihara Naoto Takayama 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1237-1258,共22页
In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi... In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm. 展开更多
关键词 MULTIPHYSICS coupling strength partitioned algorithm structure-piezoelectric-circuit coupling strongly coupled algorithm weakly coupled algorithm
下载PDF
Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers 被引量:2
14
作者 Jiaming Wen Geng Chen +7 位作者 Shengchong Hui Zijing Li Jijun Yun Xiaomeng Fan Limin Zhang Qian He Xingmin Liu Hongjing Wu 《Advanced Powder Materials》 2024年第3期1-11,共11页
Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on... Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on.However,the interactions among those microscopic factors and regulation mechanism of macroscopic properties have rarely been investigated.Two-dimensional(2D)transition metal dichalcogenide with tunable structure and phase is one of the most promising electromagnetic wave(EMW)absorbers,which provides a favorable platform for systematically studying the dynamic coupling of its microscopic factors.Herein,we constructed a NaBH_(4) solution-assisted Ar plasma method to modify the 2H-MoS_(2)and 1T-WS_(2)for exploring the regulation mechanism of microscopic factors.For MoS_(2)and WS_(2),NaBH_(4) solution-assisted Ar plasma treatment behaves with different effects on dielectric responses,realizing dynamic coupling of material microscopic factors to collaboratively promote EM losses coupling.Consequently,the MS-D3-0.5(MoS_(2),3 kV voltage,0.5 mol L^(-1)NaBH_(4) solution)displays an optimum effective absorption bandwidth of 8.01 GHz,which is 319.4%more than that of MS-raw sample.This study not only reveals the novel mechanism of plasma induced dynamic coupling of microscopic factors for EMW dissipation,but also presents a new method of plasma-dominated surface modification to optimize the EMW absorption performance. 展开更多
关键词 TMDS Ar plasma Defect Metal single atom Dynamic coupling
下载PDF
A review on electrocatalytic CO_(2) conversion via C-C and C-N coupling
15
作者 Zhuangzhi Zhang Sijun Li +6 位作者 Zheng Zhang Zhou Chen Hua Wang Xianguang Meng Wenquan Cui Xiwei Qi Jiacheng Wang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期167-194,共28页
Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of... Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of CO_(2) reduction products.The development of high-performance catalysts is the key to the both electrocatalytic reactions.In this review,we present a systematic summary of the reaction systems for electrocatalytic CO_(2) reduction,along with the coupling mechanisms of C-C and C-N bonds over outstanding electrocatalytic materials recently developed.The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed,aiming to provide insights and guidance for designing efficient CO_(2) reduction systems. 展开更多
关键词 C-C coupling C-N coupling CO_(2) conversion ELECTROCATALYSIS urea synthesis
下载PDF
Analysis of Strong Coupling Constant with Machine Learning and Its Application
16
作者 王晓云 董晨 刘翔 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期15-22,共8页
We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical la... We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range. 展开更多
关键词 STRONG coupling accumulated
下载PDF
Zonal Coupling Analysis Method of Seismic Response of Offshore Monopile Wind Turbine
17
作者 XU Xiaofeng CHEN Shaolin SUN Jie 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期103-110,共8页
The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling anal... The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees. 展开更多
关键词 offshore monopile wind turbine seismic response analysis soil-junction interactions fluid-structure inter-action
下载PDF
Vibration analysis of hydropower house based on fluid-structure coupling numerical method 被引量:2
18
作者 Shu-he WEI Liao-jun ZHANG 《Water Science and Engineering》 EI CAS 2010年第1期75-84,共10页
By using the shear stress transport (SST) model to predict the effect ot random now motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the .p... By using the shear stress transport (SST) model to predict the effect ot random now motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the .powerhouse and its tube water was developed. The effects of fluid-structure interaction are considered through the kinematic and dynamic conditions applied to the fluid-structure interfaces (FSI). Numerical simulation of turbulent flow through the whole flow passage of the powerhouse and concrete structure vibration analysis in the time domain were carried out with the model. Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flows through the whole flow passage and powerhouse structure vibration were generated. Concrete structure vibration analysis shows that the displacement, velocity, and acceleration of the dynamo floor respond dramatically to pressure fluctuations in the flow passage. Furthermore, the spectrum analysis suggests that pressure fluctuation originating from the static and dynamic disturbances of hydraulic turbine blades in the flow passage is one of the most important vibration sources. 展开更多
关键词 hydropower house fluid-structure interaction Navier-Stokes equations structuralvibration numerical simulation
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
19
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Chimera states of phase oscillator populations with nonlocal higher-order couplings
20
作者 伍勇刚 余华健 +1 位作者 郑志刚 徐灿 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期402-407,共6页
The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order... The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order interactions encoded with simplicial complexes.Previous works have shown that higher-order interactions promote coherent states.However, we uncover the fact that the introduced higher-order couplings can significantly enhance the emergence of the incoherent state.Remarkably, we identify that the chimera states arise as a result of multi-attractors in dynamic states.Importantly, we review that the increasing higher-order interactions can significantly shape the emergent probability of chimera states.All the observed results can be well described in terms of the dimension reduction method.This study is a step forward in highlighting the importance of nonlocal higher-order couplings, which might provide control strategies for the occurrence of spatial-temporal patterns in networked systems. 展开更多
关键词 synchronization complex system coupled oscillators phase transition
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部