The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co...Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.展开更多
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are ca...The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechan...Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.展开更多
Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved ...Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.展开更多
The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different op...The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing...To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.展开更多
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction...Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.展开更多
Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling s...Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.展开更多
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the...A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).展开更多
The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STA...The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress).展开更多
Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR...Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.展开更多
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec...In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.展开更多
Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our pre...Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V-V coupled energy to each vibrationaltranslational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model.展开更多
Using the mass of time-varying length balance rope focused on the hoisting conveyance, the coupling longi- tudinal-transverse model of mine friction hoist was established by using of the Hamilton's principle. The mod...Using the mass of time-varying length balance rope focused on the hoisting conveyance, the coupling longi- tudinal-transverse model of mine friction hoist was established by using of the Hamilton's principle. The modified Galerkin's method was used to discretize partial differential Eqs. The mine hoisting system was used to the example to analysis the relation between the load, velocity and transverse vibration of rope. The in situ tests were illustrated to evaluate the proposed mathematical model. The results showed that the modeling method can well represent the transverse vibration of rope.展开更多
As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed...As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.展开更多
The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train col...The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails.展开更多
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ...The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金funded by the BeijingNatural Science Foundation of China(8222003)National Natural Science Foundation of China(41807180).
文摘Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.
基金Outstanding Youth Science Fund Subsidization of Sichuan Province, China (No. 05204033).
文摘The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金supported by the National Natural Science Foundation of China(Nos.12172236 and 12202289)。
文摘Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.
基金support of this work by the National Natural Science Foundation of China(No.51405096)the Fundamental Research Funds for the Central Universities(HEUCF210710).
文摘Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.
基金The National Natural Science Foundation of China(No.51508257,51668042,51578274)the Yangtze River Scholar and the Innovation Team of M inistry of Education(No.IRT13068)the Scientific Research Project of Gansu Higher Education(No.2015B-34)
文摘The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
基金financially supported by the State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology(Grant No.GZ23112)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2021ME146).
文摘To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52002318 and 22103061)。
文摘Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
基金funded by the Open Projects Foundation of Engineering Research Center of Disaster Prevention and Mitigation of Southeast Coastal Engineering Structures of Fujian Province University(Grant No.2022009)the National Natural Science Foundation of China(Grant No.51708429)the Construction Science and Technology Plan Projects of Hubei Province(Grant No.2023011).
文摘Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.
基金the National Natural Science Foundation of China(Nos.11602204 and 12102373)the Fundamental Research Funds for the Central Universities of China(Nos.2682022ZTPY081 and 2682022CX056)the Natural Science Foundation of Sichuan Province of China(Nos.2023NSFSC0849,2023NSFSC1300,2022NSFSC1938,and 2022NSFSC2003)。
文摘A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).
基金supported by the Basic Ability Improvement Project for Young and Middle-Aged Teachers in Guangxi Universities,Project No.2021KY0792.
文摘The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress).
基金Project supported by the Xing Dian Talents Support Project of Yunnan Province(Grant No.YNWR-QNBJ-2018-0040)the Youth Project of Applied Basic Research of Yunnan Science(Grant No.202201AU070062)the Yunnan University’s Research Innovation Fund for Graduate Students(Grant No.KC-22221171).
文摘Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.
基金Supported by National Science&Technology Pillar Program of China during the 12th Five-Year Plan Period(Product Quality Optimization of Precision Strip and R&D for Key Equipment,Grant No.2015BAF30B01)
文摘In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60971009 and 61001011)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110019)+1 种基金the Natural Science Foundation of Hubei Province, China (Grant No. 2010CDB02701)the Fundamental Research Funds for the Central Universities, China (Grant No. 2012QN083)
文摘Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V-V coupled energy to each vibrationaltranslational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model.
文摘Using the mass of time-varying length balance rope focused on the hoisting conveyance, the coupling longi- tudinal-transverse model of mine friction hoist was established by using of the Hamilton's principle. The modified Galerkin's method was used to discretize partial differential Eqs. The mine hoisting system was used to the example to analysis the relation between the load, velocity and transverse vibration of rope. The in situ tests were illustrated to evaluate the proposed mathematical model. The results showed that the modeling method can well represent the transverse vibration of rope.
基金Supported by the National Key Basic Research Program of China(No.2014CB046405)
文摘As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.
基金Project(2021zzts0775) supported by the Independent Exploration and Innovation Project for Graduate Students of Central South University,ChinaProject(2021JJ30053) supported by the Hunan Natural Science Foundation,China。
文摘The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails.
基金Project supported by the National Natural Science Foundation of China(No.11972112)the Fundamental Research Funds for the Central Universities of China(Nos.N2103024 and N2103002)the Major Projects of Aero-Engines and Gasturbines(No.J2019-I-0008-0008)。
文摘The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.