A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli...Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.展开更多
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional can...The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil.展开更多
The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstr...The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstructed from CT-scan images is simulated, which incorporates the fluid-structure interaction (FSI). In addition to the investigation of the RAS effects on the wall shear stress and the displacement of the vessel wall, it is determined that the RAS leads to decrease in the renal mass flow. This may cause the activation of the renin-angiotension system and results in severe hypertension.展开更多
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ...The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.展开更多
Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Str...Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Structure Interaction(FSI)for this specific problem are relatively limited.In the present study,the fluid and structure responses of the hemodynamics along the patient aorta model and the aortic wall deformation are studied with the aid of numerical simulation taking into account PVL and 100%TAVI valve opening.In particular,the aorta without valve(AWoV)is assumed as the normal condition,whereas an aorta with TAVI 26 mm for 100%Geometrical Orifice Area(GOA)is considered as the patient aorta with PVL complication.A 3D patient-specific aorta model is elaborated using the MIMICS software.Implantation of the identical TAVI valve of Edward SAPIEN XT 26(Edwards Lifes ciences,Irvine,California)is considered.An undersized 26 mm TAVI valve with 100%valve opening is selected to mimic the presence of PVL at the aortic annulus.The present research indicates that the existence of PVL can increase the blood velocity,pressure drop and WSS in comparison to normal conditions,thereby paving the way to the development of recirculation flow,thrombus formation,aorta wall collapse,aortic rupture and damage of endothelium.展开更多
The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of...The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of the canopy shape, stability, opening load, and drag area are obtained, and they are well consistent with the experimental data gained from wind tunnel tests. The method is then used to simulate the opening process under different velocities. It is found that the first load shock affected by the velocity often occurs at the end of the initial inflation stage. For the first time, the phenomena that the inflation distance proportion coefficient increases and the dynamic load coefficient decreases, respectively, with the increase in the velocity are revealed. The above proposed method is competent to solve the large deformation problem without empirial coefficients, and can collect more space-time details of fluid-structure-motion information when it is compared with the traditional method.展开更多
Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study th...Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels.展开更多
In order to simulate and analyze the dynamic characteristics of the parachute from advanced tactical parachute system(ATPS),a nonlinear finite element algorithm and a preconditioning finite volume method are employed ...In order to simulate and analyze the dynamic characteristics of the parachute from advanced tactical parachute system(ATPS),a nonlinear finite element algorithm and a preconditioning finite volume method are employed and developed to construct three dimensional parachute fluid-structure interaction(FSI)model.Parachute fabric material is represented by membrane-cable elements,and geometrical nonlinear algorithm is employed with wrinkling technique embedded to simulate the large deformations of parachute structure by applying the NewtonRaphson iteration method.On the other hand,the time-dependent flow surrounding parachute canopy is simulated using preconditioned lower-upper symmetric Gauss-Seidel(LU-SGS)method.The pseudo solid dynamic mesh algorithm is employed to update the flow-field mesh based on the complex and arbitrary motion of parachute canopy.Due to the large amount of computation during the FSI simulation,massage passing interface(MPI)parallel computation technique is used for all those three modules to improve the performance of the FSI code.The FSI method is tested to simulate one kind of ATPS parachutes to predict the parachute configuration and anticipate the parachute descent speeds.The comparison of results between the proposed method and those in literatures demonstrates the method to be a useful tool for parachute designers.展开更多
This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible Na...This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible NavierStokes equations. The motion of the fluid domain is accounted for by an arbitrary LagrangianEulerian (ALE) strategy. A pseudosolid formulation is used to manage the deformation of the fluid do main. The structure is described by the geometrically nonlinear thermoelastic dynamics. An efficient data transfer strategy based on the Gauss points is proposed to guarantee the equilibrium of the stresses and heat along the interface. The resulting strongly coupled set of nonlinear equations for the fluid, solution procedure. A numerical example efficiency of the methodology. structure, and heat is solved by a monolithic is presented to demonstrate the robustness and展开更多
Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has ...Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has been examined in detail.Firstly,the Sereda corrosion model has been introduced to simulate the corrosion rate of the related bellows taking into account the effects of temperature and SO_(2) gas;such results have been compared with effective measurements;then,the average gas velocity in the pipeline and the von Mises stress distribution of the inner draft tube have been analyzed using a Fluid-Structure Interaction model.Finally,the semi-closed internal corrosion environment caused by a 5 mm radial gap between the inner draft tube and the bellows has been considered.The gas flow rate in the residential space has been found to be low(0.5 ms–this value leads to a stable semi-closed internal corrosion environment for exhaust gas exchange);water phase in the exhaust gas is prone to accelerate the corrosion rate.On this basis,a bellows with an optimized inner draft tube has proposed,which includes corrosion-resistant honeycomb buffer rings.展开更多
The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid domains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between ...The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid domains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between solid and fluid. While it is common knowledge that the choice of coupling technique can be very problem dependent, there exists no satisfactory coupling comparison methodology that allows for conclusions to be drawn with respect to the comparison of computational cost and solution accuracy for a given scenario. In this work, we develop a computational framework where all aspects of the computation can be held constant, save for the method in which the coupled nature of the fluid-structure equations is enforced. To enable a fair comparison of coupling methods, all simulations presented in this work are implemented within a single numerical framework within the deal.ii [1] finite element library. We have chosen the two-dimensional benchmark test problem of Turek and Hron [2] as an example to examine the relative accuracy of the coupling methods studied;however, the comparison technique is equally applicable to more complex problems. We show that for the specific case considered herein the monolithic approach outperforms partitioned and quasi-direct methods;however, this result is problem dependent and we discuss computational and modeling aspects which may affect other comparison studies.展开更多
A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevo...A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.展开更多
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam...Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained.展开更多
With the significant development of computer hardware,many advanced numerical techniques have been proposed to investigate complex hydrodynamic problems.This article aims to provide a detailed review of moving particl...With the significant development of computer hardware,many advanced numerical techniques have been proposed to investigate complex hydrodynamic problems.This article aims to provide a detailed review of moving particle semi-implicit(MPS)techniques and their application in ocean and coastal engineering.The achievements of the MPS method in stability and accuracy,boundary conditions,and acceleration techniques are discussed.The applications of the MPS method,which are classified into two main categories,namely,multiphase flows and fluid-structure interactions,are introduced.Finally,the prospects and conclusions are highlighted.The MPS method has the potential to solve practical problems.展开更多
Free-surface flows, especially those associated with fluid-structure interactions(FSIs), pose challenging problems in numerical simulations. The authors of this work recently developed a smoothed particle element meth...Free-surface flows, especially those associated with fluid-structure interactions(FSIs), pose challenging problems in numerical simulations. The authors of this work recently developed a smoothed particle element method(SPEM) to simulate FSIs. In this method, both the fluid and solid regions are initially modeled using a smoothed finite element method(S-FEM) in a Lagrangian frame, whereas the fluid regions undergoing large deformations are adaptively converted into particles and modeled with an improved smoothed particle hydrodynamics(SPH) method. This approach greatly improves computational accuracy and efficiency because of the advantages of the S-FEM in efficiently treating solid/fluid regions showing small deformations and the SPH method in effectively modeling moving interfaces. In this work, we further enhance the efficiency of the SPEM while effectively capturing local fluid information by introducing a multi-resolution technique to the SPEM and developing an effective approach to treat multi-resolution element-particle interfaces. Various numerical examples demonstrate that the multiresolution SPEM can significantly reduce the computational cost relative to the original version with a constant resolution.Moreover, the novel approach is effective in modeling various incompressible flow problems involving FSIs.展开更多
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat...Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.展开更多
The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved...The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.展开更多
Fluid-structure interaction(FSI) is a class of mechanics-related problems with mutual dependence between the fluid and structure parts and it is observable nearly everywhere, in natural phenomena to many engineering s...Fluid-structure interaction(FSI) is a class of mechanics-related problems with mutual dependence between the fluid and structure parts and it is observable nearly everywhere, in natural phenomena to many engineering systems. The primary challenges in developing numerical models with conventional grid-based methods are the inherent nonlinearity and timedependent nature of FSI, together with possible large deformations and moving interfaces. Smoothed particle hydrodynamics(SPH) method is a truly Lagrangian and meshfree particle method that conveniently treats large deformations and naturally captures rapidly moving interfaces and free surfaces. Since its invention, the SPH method has been widely applied to study different problems in engineering and sciences, including FSI problems. This article presents a review of the recent developments in SPH based modeling techniques for solving FSI-related problems. The basic concepts of SPH along with conventional and higher order particle approximation schemes are first introduced. Then, the implementation of FSI in a pure SPH framework and the hybrid approaches of SPH with other grid-based or particle-based methods are discussed. The SPH models of FSI problems with rigid, elastic and flexible structures, with granular materials, and with extremely intensive loadings are demonstrated. Some discussions on several key techniques in SPH including the balance of accuracy, stability and efficiency, the treatment of material interface, the coupling of SPH with other methods, and the particle regularization and adaptive particle resolution are provided as concluding marks.展开更多
Fatigue and cracks have occurred in many large hydraulic turbines after they were put into production. The cracks are thought to be due to dynamic stresses in the runner caused by hydraulic forces. Computational fluid...Fatigue and cracks have occurred in many large hydraulic turbines after they were put into production. The cracks are thought to be due to dynamic stresses in the runner caused by hydraulic forces. Computational fluid dynamics (CFD) simulations that included the spiral case, stay vane, guide vane, runner vane, and draft tube were run at various operating points to analyze the pressure distribution on the runner surface and the stress characteristics in the runner due to the fluid-structure interactions (FSI). The dynamic stresses in the Francis turbine runner at the most dangerous operating point were then analyzed. The results show that the dynamic stresses caused by the hydraulic forces during off-design operating points are one of the main reasons for the fatigue and cracks in the runner blade. The results can be used to optimize the runner and to analyze other critical components in the hydraulic turbine.展开更多
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z413)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1110109)
文摘Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
基金Project supported by the National Natural Science Foundation of China(No.10832007)the Shanghai Leading Academic Discipline Project(No.B206)
文摘The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil.
文摘The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstructed from CT-scan images is simulated, which incorporates the fluid-structure interaction (FSI). In addition to the investigation of the RAS effects on the wall shear stress and the displacement of the vessel wall, it is determined that the RAS leads to decrease in the renal mass flow. This may cause the activation of the renin-angiotension system and results in severe hypertension.
基金Project supported by the National Natural Science Foundation of China(No.11972112)the Fundamental Research Funds for the Central Universities of China(Nos.N2103024 and N2103002)the Major Projects of Aero-Engines and Gasturbines(No.J2019-I-0008-0008)。
文摘The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.
基金Universiti Putra Malaysia,for providing funds for this project through Grant UPM GP-IPM/2019/9675000.
文摘Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Structure Interaction(FSI)for this specific problem are relatively limited.In the present study,the fluid and structure responses of the hemodynamics along the patient aorta model and the aortic wall deformation are studied with the aid of numerical simulation taking into account PVL and 100%TAVI valve opening.In particular,the aorta without valve(AWoV)is assumed as the normal condition,whereas an aorta with TAVI 26 mm for 100%Geometrical Orifice Area(GOA)is considered as the patient aorta with PVL complication.A 3D patient-specific aorta model is elaborated using the MIMICS software.Implantation of the identical TAVI valve of Edward SAPIEN XT 26(Edwards Lifes ciences,Irvine,California)is considered.An undersized 26 mm TAVI valve with 100%valve opening is selected to mimic the presence of PVL at the aortic annulus.The present research indicates that the existence of PVL can increase the blood velocity,pressure drop and WSS in comparison to normal conditions,thereby paving the way to the development of recirculation flow,thrombus formation,aorta wall collapse,aortic rupture and damage of endothelium.
基金supported by the National Natural Science Foundation of China(No.11172137)the Aeronautical Science Foundation of China(No.20122910001)
文摘The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of the canopy shape, stability, opening load, and drag area are obtained, and they are well consistent with the experimental data gained from wind tunnel tests. The method is then used to simulate the opening process under different velocities. It is found that the first load shock affected by the velocity often occurs at the end of the initial inflation stage. For the first time, the phenomena that the inflation distance proportion coefficient increases and the dynamic load coefficient decreases, respectively, with the increase in the velocity are revealed. The above proposed method is competent to solve the large deformation problem without empirial coefficients, and can collect more space-time details of fluid-structure-motion information when it is compared with the traditional method.
文摘Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels.
文摘In order to simulate and analyze the dynamic characteristics of the parachute from advanced tactical parachute system(ATPS),a nonlinear finite element algorithm and a preconditioning finite volume method are employed and developed to construct three dimensional parachute fluid-structure interaction(FSI)model.Parachute fabric material is represented by membrane-cable elements,and geometrical nonlinear algorithm is employed with wrinkling technique embedded to simulate the large deformations of parachute structure by applying the NewtonRaphson iteration method.On the other hand,the time-dependent flow surrounding parachute canopy is simulated using preconditioned lower-upper symmetric Gauss-Seidel(LU-SGS)method.The pseudo solid dynamic mesh algorithm is employed to update the flow-field mesh based on the complex and arbitrary motion of parachute canopy.Due to the large amount of computation during the FSI simulation,massage passing interface(MPI)parallel computation technique is used for all those three modules to improve the performance of the FSI code.The FSI method is tested to simulate one kind of ATPS parachutes to predict the parachute configuration and anticipate the parachute descent speeds.The comparison of results between the proposed method and those in literatures demonstrates the method to be a useful tool for parachute designers.
文摘This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible NavierStokes equations. The motion of the fluid domain is accounted for by an arbitrary LagrangianEulerian (ALE) strategy. A pseudosolid formulation is used to manage the deformation of the fluid do main. The structure is described by the geometrically nonlinear thermoelastic dynamics. An efficient data transfer strategy based on the Gauss points is proposed to guarantee the equilibrium of the stresses and heat along the interface. The resulting strongly coupled set of nonlinear equations for the fluid, solution procedure. A numerical example efficiency of the methodology. structure, and heat is solved by a monolithic is presented to demonstrate the robustness and
基金funded by Science and Technology Project of Hebei Education Department(Project No.QN2022198).
文摘Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has been examined in detail.Firstly,the Sereda corrosion model has been introduced to simulate the corrosion rate of the related bellows taking into account the effects of temperature and SO_(2) gas;such results have been compared with effective measurements;then,the average gas velocity in the pipeline and the von Mises stress distribution of the inner draft tube have been analyzed using a Fluid-Structure Interaction model.Finally,the semi-closed internal corrosion environment caused by a 5 mm radial gap between the inner draft tube and the bellows has been considered.The gas flow rate in the residential space has been found to be low(0.5 ms–this value leads to a stable semi-closed internal corrosion environment for exhaust gas exchange);water phase in the exhaust gas is prone to accelerate the corrosion rate.On this basis,a bellows with an optimized inner draft tube has proposed,which includes corrosion-resistant honeycomb buffer rings.
文摘The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid domains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between solid and fluid. While it is common knowledge that the choice of coupling technique can be very problem dependent, there exists no satisfactory coupling comparison methodology that allows for conclusions to be drawn with respect to the comparison of computational cost and solution accuracy for a given scenario. In this work, we develop a computational framework where all aspects of the computation can be held constant, save for the method in which the coupled nature of the fluid-structure equations is enforced. To enable a fair comparison of coupling methods, all simulations presented in this work are implemented within a single numerical framework within the deal.ii [1] finite element library. We have chosen the two-dimensional benchmark test problem of Turek and Hron [2] as an example to examine the relative accuracy of the coupling methods studied;however, the comparison technique is equally applicable to more complex problems. We show that for the specific case considered herein the monolithic approach outperforms partitioned and quasi-direct methods;however, this result is problem dependent and we discuss computational and modeling aspects which may affect other comparison studies.
基金Supported by Marie Curie International Incoming Fellowship (No. PIIF-GA-2009-253453)
文摘A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.
基金supported by the National Natural Science Foundation of China(51879159,51490675,11432009,and 51579145)Chang Jiang Scholars Program(T2014099)+3 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)Lloyd’s Register Foundation for doctoral student
文摘Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained.
基金Supported by the National Key Research and Development Program of China(2019YFB1704200)the National Natural Science Foundation of China(51879159,52131102).
文摘With the significant development of computer hardware,many advanced numerical techniques have been proposed to investigate complex hydrodynamic problems.This article aims to provide a detailed review of moving particle semi-implicit(MPS)techniques and their application in ocean and coastal engineering.The achievements of the MPS method in stability and accuracy,boundary conditions,and acceleration techniques are discussed.The applications of the MPS method,which are classified into two main categories,namely,multiphase flows and fluid-structure interactions,are introduced.Finally,the prospects and conclusions are highlighted.The MPS method has the potential to solve practical problems.
基金supported by the National Numerical Wind Tunnel Project (Grant No. NNW2019ZT2-B02)the National Natural Science Foundation of China (Grant Nos. 12032002,51779003,and 11902005)the SinoGerman Mobility Programme (Grant No. M-0210)。
文摘Free-surface flows, especially those associated with fluid-structure interactions(FSIs), pose challenging problems in numerical simulations. The authors of this work recently developed a smoothed particle element method(SPEM) to simulate FSIs. In this method, both the fluid and solid regions are initially modeled using a smoothed finite element method(S-FEM) in a Lagrangian frame, whereas the fluid regions undergoing large deformations are adaptively converted into particles and modeled with an improved smoothed particle hydrodynamics(SPH) method. This approach greatly improves computational accuracy and efficiency because of the advantages of the S-FEM in efficiently treating solid/fluid regions showing small deformations and the SPH method in effectively modeling moving interfaces. In this work, we further enhance the efficiency of the SPEM while effectively capturing local fluid information by introducing a multi-resolution technique to the SPEM and developing an effective approach to treat multi-resolution element-particle interfaces. Various numerical examples demonstrate that the multiresolution SPEM can significantly reduce the computational cost relative to the original version with a constant resolution.Moreover, the novel approach is effective in modeling various incompressible flow problems involving FSIs.
基金the National Natural Science Foundation of China(No.51779143)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2020ZD101)the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(No.19X100040072)。
文摘Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.
基金supported by the National Natural Science Foundation of China(Nos.51975025 and 51890822)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2016QNRC001)the National Key Research and Development Program of China(No.2019YFB2004500)。
文摘The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.
基金supported by the National Natural Science Foundation of China(Grant No.51779003)the National Key Research and Development Project of China(Grant No.2018YFB0704000)
文摘Fluid-structure interaction(FSI) is a class of mechanics-related problems with mutual dependence between the fluid and structure parts and it is observable nearly everywhere, in natural phenomena to many engineering systems. The primary challenges in developing numerical models with conventional grid-based methods are the inherent nonlinearity and timedependent nature of FSI, together with possible large deformations and moving interfaces. Smoothed particle hydrodynamics(SPH) method is a truly Lagrangian and meshfree particle method that conveniently treats large deformations and naturally captures rapidly moving interfaces and free surfaces. Since its invention, the SPH method has been widely applied to study different problems in engineering and sciences, including FSI problems. This article presents a review of the recent developments in SPH based modeling techniques for solving FSI-related problems. The basic concepts of SPH along with conventional and higher order particle approximation schemes are first introduced. Then, the implementation of FSI in a pure SPH framework and the hybrid approaches of SPH with other grid-based or particle-based methods are discussed. The SPH models of FSI problems with rigid, elastic and flexible structures, with granular materials, and with extremely intensive loadings are demonstrated. Some discussions on several key techniques in SPH including the balance of accuracy, stability and efficiency, the treatment of material interface, the coupling of SPH with other methods, and the particle regularization and adaptive particle resolution are provided as concluding marks.
文摘Fatigue and cracks have occurred in many large hydraulic turbines after they were put into production. The cracks are thought to be due to dynamic stresses in the runner caused by hydraulic forces. Computational fluid dynamics (CFD) simulations that included the spiral case, stay vane, guide vane, runner vane, and draft tube were run at various operating points to analyze the pressure distribution on the runner surface and the stress characteristics in the runner due to the fluid-structure interactions (FSI). The dynamic stresses in the Francis turbine runner at the most dangerous operating point were then analyzed. The results show that the dynamic stresses caused by the hydraulic forces during off-design operating points are one of the main reasons for the fatigue and cracks in the runner blade. The results can be used to optimize the runner and to analyze other critical components in the hydraulic turbine.