A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum ba...A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum balance equations to take into account the effect of the dispersed solid phase. This model has been extended to two-dimensional formulations and has been implemented in the commercial code CFX 4.3. The model correctly simulates the homogeneous fluidisation of Geldart Group A and the bubbling fluidisation of Geldart Group B in gas-solid fluidised beds.展开更多
The flow characteristics of a dual fluidised bed gasifier(DFBG)are more complex than those of a single fluidised bed gasifier.For stable operation and appropriate control,a cold DFBG test facility with both an upper a...The flow characteristics of a dual fluidised bed gasifier(DFBG)are more complex than those of a single fluidised bed gasifier.For stable operation and appropriate control,a cold DFBG test facility with both an upper and a lower U-valve was built,and electrical capacitance tomography(ECT)sensors were installed with pressure transducers to investigate the effects of operating conditions on gas-solids flow hydrodynamics.The operating parameters included gas velocities in the riser and in the bubbling fluidised bed,aeration velocity in the lower U-valve,bed material inventory,and particle size.This is the first time that ECT was applied in different flow zones of a dual fluidised bed gasifier system.The experimental results indicated that ECT in the recycle chamber could monitor the performance of the lower U-valve under different operating conditions for early detection of gas shortcut from the riser to the bubbling bed.Three main flow regimes in the riser and the differences between the reactors were identified by two sets of ECT sensors with pressure transducers.Finally,the effects of the operating conditions on the pressure drop in different parts of the DFBG was investigated.展开更多
Characterisations of instantaneous mixing behaviours in fluidised beds with binary mixtures has many challenges.We studied the instantaneous mixing characteristics of binary mixtures in a 2-D quasi gas-solid fluidised...Characterisations of instantaneous mixing behaviours in fluidised beds with binary mixtures has many challenges.We studied the instantaneous mixing characteristics of binary mixtures in a 2-D quasi gas-solid fluidised bed using a capacitance probe method.This method enabled the quantitative assessment of instantaneous mixing behaviours,including mixing index,rate,and time.Three kinds of binary mixtures of similar size but different density were used for the transient and steady fluidisation experiments in a bubbling fluidised bed.The mixing curves of initially segregated binary mixtures were acquired,and the instantaneous characteristics for the entire process were analysed.An equation was proposed to describe the mixing process and predict the mixing degree over time.By comparing experiments with different working conditions,the effects of superficial gas velocity and density ratio on the mixing in the centre and at the wall of the fluidised bed were addressed.During the stable fluidisation stage,the axial concentration profiles of the mixtures were obtained,and the mechanisms of mixing were discussed.Results showed that the mixing level increased logarithmically with time and eventually reached a relatively stable value.Increasing the superficial gas velocity and reducing the density ratio promoted mixing and reduced mixing time.High superficial gas velocities tended to mix the mixtures well and quickly,regardless of the density ratio of the two components.展开更多
Magnetic resonance imaging (MRI) gave images of air jets from orifices in the distributor plate of a bed of poppy seeds. Attention focused on two features: (1) The interaction between nearby vertical jets from tw...Magnetic resonance imaging (MRI) gave images of air jets from orifices in the distributor plate of a bed of poppy seeds. Attention focused on two features: (1) The interaction between nearby vertical jets from two, three or four orifices; (2) Wall effects, where one or more orifices created vertical jets near the vertical wall of the cylinder containing the particle bed. The results show that nearby jets are mutually attracted. Likewise a jet near a wall bends out of the vertical, towards the wall, For multiple adjacent jets, the jet lengths show dependence on orifice layout: the lengths are in reasonable agreement with published measurements, by other methods, for single jets. The MRI gives three-dimensional images of the single jets and of multiple jets, separate or merging.展开更多
Rectangular inclined channels prove promising for solid classification based on the principle of parti- cle differential sedimentation. In the present work, we investigated the motion characteristics of binary solids ...Rectangular inclined channels prove promising for solid classification based on the principle of parti- cle differential sedimentation. In the present work, we investigated the motion characteristics of binary solids in a modified fluidised bed (mFB) with inclined plates. We developed a theoretical model for the particle motion behaviour that accounts for the average solid volume fraction in the inclined channel and interactions between binary solids. The experimental system was designed to be consistent with the idealised theoretical arrangements to maximise the measurement accuracy. The experimental particles were mixtures of silica sand particles of sizes 425-710 i^m and 710-880/~m, respectively. Specifically, we investigated the flow hydrodynamics of the binary suspension in terms of the settling length of both par- ticle species and the bed expansion behaviour. We also analysed the utilisation factor and the separation efficiency of the mFB. The results showed that the average solid volume fraction in the inclined channel fluctuated slightly for a given total solid inventory. The utilisation factor and separation efficiency of the system decreased when increasing either the fluidisation velocity or the solid inventory. The prediction results were in good agreement with the experimental data with an absolute deviation of less than 15%.展开更多
In this study,a hydrophobic material,ethylcellulose,which was used as its aqueous suspension Surelease^(®),was combined with a swelling agent as the swelling layer to prepare delayed-release pellets for Danshensu...In this study,a hydrophobic material,ethylcellulose,which was used as its aqueous suspension Surelease^(®),was combined with a swelling agent as the swelling layer to prepare delayed-release pellets for Danshensu,which is a hydrophilic drug with low MW.A rupturable,delayed-release pellet consists of a drug core,a swelling layer containing a swelling agent(cross-linked sodium carboxymethyl cellulose)with a hydrophobic agent(Surelease^(®)),and a controlled layer composed by an insoluble,water-permeable polymeric coating(aqueous ethylcellulose dispersions)was developed in a fluidised bed.Results showed that blending Surelease^(®)into the swelling layer could effectively extend the release of Danshensu from the pellets,which may be attributed to the slowed swelling rate by reduction of water penetration and improvement of mechanical integrity of the swelling layer.Drug in the delayed pellets showed sustained release in beagle dogs after oral administration with comparable in-vivo exposure to the uncoated drug pellets.In conclusion,blends of hydrophobic and swelling agents in the swelling layer in doublemembrane pellets could achieve a delayed drug-release profile in vitro,as well as delayed and sustained absorption in vivo for highly soluble,low-MW drug.The present study highlighted the potential use of a delayed-release system for other hydrophilic,low-MW drugs to meet the formulation requirements for chronopharmacological diseases.展开更多
A particle sub-model describing the bed characteristics of a bubbling fluidised bed is presented. Atomisation air, applied at high pressures via a nozzle positioned above the bed for spray formation, is incorporated i...A particle sub-model describing the bed characteristics of a bubbling fluidised bed is presented. Atomisation air, applied at high pressures via a nozzle positioned above the bed for spray formation, is incorporated in the model since its presence has a profound influence on the bed characteristics, though the spray itself is not yet considered. A particle sub-model is developed using well-known empirical relations for particle drag force, bubble growth and velocity and particle distribution above the fluidised-bed surface. Simple but effective assumptions and abstractions were made concerning bubble distribution, particle ejection at the bed surface and the behaviour of atomisation air flow upon impacting the surface of a bubbling fluidised bed, The model was shown to be capable of predicting the fluidised bed characteristics in terms of bed heights, voidage distributions and solids volume fractions with good accuracy in less than 5 min of calculation time on a regular desktop PC. It is therefore suitable for incorporation into general process control models aimed at dynamic control for process efficiency and product quality in top-spray fluidised bed coating processes.展开更多
At the present time, the sewage treatment plants in the UK produce about 25 million tons of sewage sludge each year at a concentration of 4% solids. New regulations forbid sea dumping and in the near future new incin...At the present time, the sewage treatment plants in the UK produce about 25 million tons of sewage sludge each year at a concentration of 4% solids. New regulations forbid sea dumping and in the near future new incinerators will be required to dispose of about 5 million tons per year. Bubbling fluidised bed incinerators are widely used to burn sewage sludge at a typical consumption rate of about 0.02kg(dry)·s -1 ·m 2 , and it follows that over 300 conventional fluidised bed incinerators of 3m diameter could be required to cope with the increased demand.\;At Sheffield University Waste Incineration Centre (SUWIC) research work is being carried out to develop a novel spinning fluidised bed incinerator. The key factor to note is that when air flows up through a bed of near mono sized particles, it fluidises when the pressure drop across the bed is equal to the weight of the bed. Normally, the weight of the bed is determined by gravity. However, if the bed is contained by a cylindrical air distributor ‘plate’ that is rotating rapidly about its axis, then the effective weight of the bed can be increased dramatically. The airflow passing through the bed can be increased proportionally to the “g” level produced by the rotation and it follows that the process has been intensified. In exploratory tests with a spinning fluidised bed we have achieved combustion intensities with coal combustion as high as 100MW/m 3. A problem with burning coal is that it was difficult to remove the heat and rotating water seals had to be used to transfer cooling water into the bed. In the case of sewage and other sludges, this problem does not exist since the flue gases can remove the small amount of heat released. The rotating fluidised bed sludge incinerator is a novel device, which is very compact. It is able to solve the turndown problem encountered with conventional fluidised beds by simply changing the rotation speed. Bearing in mind that a centrifugal sludge de watering unit is already used on sludge incineration plants, it is likely that the rotating fluidised bed can be combined with the de watering unit, resulting in further process integration and intensification. Furthermore, our ash sintering system can be added to render the ash non toxic and unleachable thus reducing the cost of its disposal.展开更多
Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) is a commonly used numerical method to model gas-solid flow in fluidised beds and other multiphase systems. A significant limitation of CFD-D...Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) is a commonly used numerical method to model gas-solid flow in fluidised beds and other multiphase systems. A significant limitation of CFD-DEM is the feasibility of the realistic simulation of large numbers of particles. Coarse-graining (CG) approaches, through which groups of multiple individual particles are represented by single, larger particles, can substantially reduce the total number of particles while maintaining similar system dynamics. As these three CG models have not previously been compared, there remains some debate, however, about the best practice in the application of CG in CFD-DEM simulations. In this paper, we evaluate the performance of three typical CG methods based on simulations of a bubbling fluidised bed. This is achieved through the use of a numerical validation framework, which makes full use of the high-resolution 3D positron emission particle tracking (PEPT) measurements to rigorously validate the outputs of CFD-DEM simulations conducted using various different coarse-graining models, and various different degrees of coarse-graining. The particle flow behaviours in terms of the particle occupancy field, velocity field, circulation time, and bubble size and velocity, are comprehensively analysed. It is shown that the CG simulation starts to fail when the size ratio between the bed chamber and the particles decreases to approximately 20. It is also observed, somewhat surprisingly, that the specific CG approach applied to interparticle contact parameters does not have a substantial effect on the simulation results for the bubbling bed simulations across a wide range of CG factors.展开更多
The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S, Cl, Br, As, Se, Cu, Ni, Zn, Ga, Ge, Rb, and Pb out of flue gas during the coal combustion at f...The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S, Cl, Br, As, Se, Cu, Ni, Zn, Ga, Ge, Rb, and Pb out of flue gas during the coal combustion at fluidised-bed power station where the coal was combusted along with limestone. The competitive influence of 10%-25% CaO in fly ashes on the distribution of studied elements was studied as well to be clear which factor governs behaviour of studied elements. Except of S (with significant association with CaO) and Rb and Pb (with major affinity to A1203) the statistically significant and positive correlation coefficients were calculated for the relations between unburned carbon content and Br (0.959), Cl (0.957), Cu (0.916), Se (0.898), Ni (0.866), As (0.861), Zn (0.742), Ge (0.717), and Ga (0.588) content. The results suggest that the unburned carbon is promising material in terms of flue gas cleaning even if contained in highly calcareous fly ashes.展开更多
This work involves the production of magnesium in the form of Mg(OH)_(2)from serpentinite rock(nickel mine tailing)material followed by conversion into MgCO_(3)using a pressurised fluidised bed(PFB)reactor operating a...This work involves the production of magnesium in the form of Mg(OH)_(2)from serpentinite rock(nickel mine tailing)material followed by conversion into MgCO_(3)using a pressurised fluidised bed(PFB)reactor operating at 400℃-600℃and pressures up to 2.85 MPa.Our approach is rooted in the thermodynamic fact that the reaction between Mg(OH)_(2)and gaseous CO_(2)forming MgCO_(3)and water releases significant amounts of heat.The main problem is,however,the chemical kinetics;the reaction is slow and has to be accelerated in order to be used in an economically viable process for large-scale(~1 Mt/a)CO_(2)sequestration.We have constructed a labscale PFB reactor test-setup for optimising the carbonation reaction.At high enough temperatures and conversion levels the reaction should provide the heat for the proceeding Mg(OH)_(2)production step,making the overall process energy neutral.So far we have been able to achieve a conversion degree of 26%at 500℃and 2.85 MPa after 30 min(particle size 125-212μm).In this paper the test facility and our latest results and progress on CO_(2)mineral carbonation are summarised.Also,the possible integration of the iron as a feedstock for iron and steel production will be briefly addressed.An interesting side-effect of this carbon dioxide capture and storage(CCS)route is that significant amounts of iron are obtained from the serpentinite rock material.This is released during the Mg(OH)_(2)production and can be of great interest to the iron-and steel producing sector,which at the same time is Finland’s largest CO_(2)producer.展开更多
基金Supported by EU Comm ission(No.ENK5 - CT2 0 0 0 - 0 0 314 )
文摘A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum balance equations to take into account the effect of the dispersed solid phase. This model has been extended to two-dimensional formulations and has been implemented in the commercial code CFX 4.3. The model correctly simulates the homogeneous fluidisation of Geldart Group A and the bubbling fluidisation of Geldart Group B in gas-solid fluidised beds.
基金This work was funded by the National Natural Science Founda-tion of China(Nos.61771455 and 61811530333)Chinese Academy of Sciences Major International Collaboration Project and the Royal Society Newton Advanced Fellowship(NA170124).
文摘The flow characteristics of a dual fluidised bed gasifier(DFBG)are more complex than those of a single fluidised bed gasifier.For stable operation and appropriate control,a cold DFBG test facility with both an upper and a lower U-valve was built,and electrical capacitance tomography(ECT)sensors were installed with pressure transducers to investigate the effects of operating conditions on gas-solids flow hydrodynamics.The operating parameters included gas velocities in the riser and in the bubbling fluidised bed,aeration velocity in the lower U-valve,bed material inventory,and particle size.This is the first time that ECT was applied in different flow zones of a dual fluidised bed gasifier system.The experimental results indicated that ECT in the recycle chamber could monitor the performance of the lower U-valve under different operating conditions for early detection of gas shortcut from the riser to the bubbling bed.Three main flow regimes in the riser and the differences between the reactors were identified by two sets of ECT sensors with pressure transducers.Finally,the effects of the operating conditions on the pressure drop in different parts of the DFBG was investigated.
基金the National Nature Science Foundation of China through contract No.51925602,No.51888103 and No.51676158.
文摘Characterisations of instantaneous mixing behaviours in fluidised beds with binary mixtures has many challenges.We studied the instantaneous mixing characteristics of binary mixtures in a 2-D quasi gas-solid fluidised bed using a capacitance probe method.This method enabled the quantitative assessment of instantaneous mixing behaviours,including mixing index,rate,and time.Three kinds of binary mixtures of similar size but different density were used for the transient and steady fluidisation experiments in a bubbling fluidised bed.The mixing curves of initially segregated binary mixtures were acquired,and the instantaneous characteristics for the entire process were analysed.An equation was proposed to describe the mixing process and predict the mixing degree over time.By comparing experiments with different working conditions,the effects of superficial gas velocity and density ratio on the mixing in the centre and at the wall of the fluidised bed were addressed.During the stable fluidisation stage,the axial concentration profiles of the mixtures were obtained,and the mechanisms of mixing were discussed.Results showed that the mixing level increased logarithmically with time and eventually reached a relatively stable value.Increasing the superficial gas velocity and reducing the density ratio promoted mixing and reduced mixing time.High superficial gas velocities tended to mix the mixtures well and quickly,regardless of the density ratio of the two components.
基金the Engineering and Physical Sciences Research Council(Grant number EP/F041772/1)
文摘Magnetic resonance imaging (MRI) gave images of air jets from orifices in the distributor plate of a bed of poppy seeds. Attention focused on two features: (1) The interaction between nearby vertical jets from two, three or four orifices; (2) Wall effects, where one or more orifices created vertical jets near the vertical wall of the cylinder containing the particle bed. The results show that nearby jets are mutually attracted. Likewise a jet near a wall bends out of the vertical, towards the wall, For multiple adjacent jets, the jet lengths show dependence on orifice layout: the lengths are in reasonable agreement with published measurements, by other methods, for single jets. The MRI gives three-dimensional images of the single jets and of multiple jets, separate or merging.
文摘Rectangular inclined channels prove promising for solid classification based on the principle of parti- cle differential sedimentation. In the present work, we investigated the motion characteristics of binary solids in a modified fluidised bed (mFB) with inclined plates. We developed a theoretical model for the particle motion behaviour that accounts for the average solid volume fraction in the inclined channel and interactions between binary solids. The experimental system was designed to be consistent with the idealised theoretical arrangements to maximise the measurement accuracy. The experimental particles were mixtures of silica sand particles of sizes 425-710 i^m and 710-880/~m, respectively. Specifically, we investigated the flow hydrodynamics of the binary suspension in terms of the settling length of both par- ticle species and the bed expansion behaviour. We also analysed the utilisation factor and the separation efficiency of the mFB. The results showed that the average solid volume fraction in the inclined channel fluctuated slightly for a given total solid inventory. The utilisation factor and separation efficiency of the system decreased when increasing either the fluidisation velocity or the solid inventory. The prediction results were in good agreement with the experimental data with an absolute deviation of less than 15%.
基金Financial support was provided by a research grant from the University of Macao(Research Grant RG085/09-10S/ZY/ICMS and UL016/09-Y4/CMS/WYT01/ICMS).
文摘In this study,a hydrophobic material,ethylcellulose,which was used as its aqueous suspension Surelease^(®),was combined with a swelling agent as the swelling layer to prepare delayed-release pellets for Danshensu,which is a hydrophilic drug with low MW.A rupturable,delayed-release pellet consists of a drug core,a swelling layer containing a swelling agent(cross-linked sodium carboxymethyl cellulose)with a hydrophobic agent(Surelease^(®)),and a controlled layer composed by an insoluble,water-permeable polymeric coating(aqueous ethylcellulose dispersions)was developed in a fluidised bed.Results showed that blending Surelease^(®)into the swelling layer could effectively extend the release of Danshensu from the pellets,which may be attributed to the slowed swelling rate by reduction of water penetration and improvement of mechanical integrity of the swelling layer.Drug in the delayed pellets showed sustained release in beagle dogs after oral administration with comparable in-vivo exposure to the uncoated drug pellets.In conclusion,blends of hydrophobic and swelling agents in the swelling layer in doublemembrane pellets could achieve a delayed drug-release profile in vitro,as well as delayed and sustained absorption in vivo for highly soluble,low-MW drug.The present study highlighted the potential use of a delayed-release system for other hydrophilic,low-MW drugs to meet the formulation requirements for chronopharmacological diseases.
基金the financial support of the Special Research Fund (BOF) of the Ghent University
文摘A particle sub-model describing the bed characteristics of a bubbling fluidised bed is presented. Atomisation air, applied at high pressures via a nozzle positioned above the bed for spray formation, is incorporated in the model since its presence has a profound influence on the bed characteristics, though the spray itself is not yet considered. A particle sub-model is developed using well-known empirical relations for particle drag force, bubble growth and velocity and particle distribution above the fluidised-bed surface. Simple but effective assumptions and abstractions were made concerning bubble distribution, particle ejection at the bed surface and the behaviour of atomisation air flow upon impacting the surface of a bubbling fluidised bed, The model was shown to be capable of predicting the fluidised bed characteristics in terms of bed heights, voidage distributions and solids volume fractions with good accuracy in less than 5 min of calculation time on a regular desktop PC. It is therefore suitable for incorporation into general process control models aimed at dynamic control for process efficiency and product quality in top-spray fluidised bed coating processes.
文摘At the present time, the sewage treatment plants in the UK produce about 25 million tons of sewage sludge each year at a concentration of 4% solids. New regulations forbid sea dumping and in the near future new incinerators will be required to dispose of about 5 million tons per year. Bubbling fluidised bed incinerators are widely used to burn sewage sludge at a typical consumption rate of about 0.02kg(dry)·s -1 ·m 2 , and it follows that over 300 conventional fluidised bed incinerators of 3m diameter could be required to cope with the increased demand.\;At Sheffield University Waste Incineration Centre (SUWIC) research work is being carried out to develop a novel spinning fluidised bed incinerator. The key factor to note is that when air flows up through a bed of near mono sized particles, it fluidises when the pressure drop across the bed is equal to the weight of the bed. Normally, the weight of the bed is determined by gravity. However, if the bed is contained by a cylindrical air distributor ‘plate’ that is rotating rapidly about its axis, then the effective weight of the bed can be increased dramatically. The airflow passing through the bed can be increased proportionally to the “g” level produced by the rotation and it follows that the process has been intensified. In exploratory tests with a spinning fluidised bed we have achieved combustion intensities with coal combustion as high as 100MW/m 3. A problem with burning coal is that it was difficult to remove the heat and rotating water seals had to be used to transfer cooling water into the bed. In the case of sewage and other sludges, this problem does not exist since the flue gases can remove the small amount of heat released. The rotating fluidised bed sludge incinerator is a novel device, which is very compact. It is able to solve the turndown problem encountered with conventional fluidised beds by simply changing the rotation speed. Bearing in mind that a centrifugal sludge de watering unit is already used on sludge incineration plants, it is likely that the rotating fluidised bed can be combined with the de watering unit, resulting in further process integration and intensification. Furthermore, our ash sintering system can be added to render the ash non toxic and unleachable thus reducing the cost of its disposal.
文摘Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) is a commonly used numerical method to model gas-solid flow in fluidised beds and other multiphase systems. A significant limitation of CFD-DEM is the feasibility of the realistic simulation of large numbers of particles. Coarse-graining (CG) approaches, through which groups of multiple individual particles are represented by single, larger particles, can substantially reduce the total number of particles while maintaining similar system dynamics. As these three CG models have not previously been compared, there remains some debate, however, about the best practice in the application of CG in CFD-DEM simulations. In this paper, we evaluate the performance of three typical CG methods based on simulations of a bubbling fluidised bed. This is achieved through the use of a numerical validation framework, which makes full use of the high-resolution 3D positron emission particle tracking (PEPT) measurements to rigorously validate the outputs of CFD-DEM simulations conducted using various different coarse-graining models, and various different degrees of coarse-graining. The particle flow behaviours in terms of the particle occupancy field, velocity field, circulation time, and bubble size and velocity, are comprehensively analysed. It is shown that the CG simulation starts to fail when the size ratio between the bed chamber and the particles decreases to approximately 20. It is also observed, somewhat surprisingly, that the specific CG approach applied to interparticle contact parameters does not have a substantial effect on the simulation results for the bubbling bed simulations across a wide range of CG factors.
基金created in the project No.CZ.1.05/2.1.00/01.0040 "Regional Materials Science and Technology Centre" within the frame of the operation programme "Research and Development for Innovations" financed by the Structural Funds and from the state budget of the Czech RepublicOP VaVPI by project No. ENET CZ.1.05/2.1.00/03.0069
文摘The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S, Cl, Br, As, Se, Cu, Ni, Zn, Ga, Ge, Rb, and Pb out of flue gas during the coal combustion at fluidised-bed power station where the coal was combusted along with limestone. The competitive influence of 10%-25% CaO in fly ashes on the distribution of studied elements was studied as well to be clear which factor governs behaviour of studied elements. Except of S (with significant association with CaO) and Rb and Pb (with major affinity to A1203) the statistically significant and positive correlation coefficients were calculated for the relations between unburned carbon content and Br (0.959), Cl (0.957), Cu (0.916), Se (0.898), Ni (0.866), As (0.861), Zn (0.742), Ge (0.717), and Ga (0.588) content. The results suggest that the unburned carbon is promising material in terms of flue gas cleaning even if contained in highly calcareous fly ashes.
基金funded(2008-2011)by the Academy of Finland—Sustainable Energy programme(SusEn).
文摘This work involves the production of magnesium in the form of Mg(OH)_(2)from serpentinite rock(nickel mine tailing)material followed by conversion into MgCO_(3)using a pressurised fluidised bed(PFB)reactor operating at 400℃-600℃and pressures up to 2.85 MPa.Our approach is rooted in the thermodynamic fact that the reaction between Mg(OH)_(2)and gaseous CO_(2)forming MgCO_(3)and water releases significant amounts of heat.The main problem is,however,the chemical kinetics;the reaction is slow and has to be accelerated in order to be used in an economically viable process for large-scale(~1 Mt/a)CO_(2)sequestration.We have constructed a labscale PFB reactor test-setup for optimising the carbonation reaction.At high enough temperatures and conversion levels the reaction should provide the heat for the proceeding Mg(OH)_(2)production step,making the overall process energy neutral.So far we have been able to achieve a conversion degree of 26%at 500℃and 2.85 MPa after 30 min(particle size 125-212μm).In this paper the test facility and our latest results and progress on CO_(2)mineral carbonation are summarised.Also,the possible integration of the iron as a feedstock for iron and steel production will be briefly addressed.An interesting side-effect of this carbon dioxide capture and storage(CCS)route is that significant amounts of iron are obtained from the serpentinite rock material.This is released during the Mg(OH)_(2)production and can be of great interest to the iron-and steel producing sector,which at the same time is Finland’s largest CO_(2)producer.