The impact of temperature and particle size on minimumfluidizing velocity was studied and analyzed in a small pilot scale of bubbling fluidized bed reactor.This study was devoted to providing some data about fluidizat...The impact of temperature and particle size on minimumfluidizing velocity was studied and analyzed in a small pilot scale of bubbling fluidized bed reactor.This study was devoted to providing some data about fluidization to the literature under high temperature conditions.The experiments were carried out to evaluate the minimum fluidizing velocity over a vast range of temperature levels from 20℃ to 850℃ using silica sand with a particle size of 300-425μm,425-500μm,500-600μm,and 600-710μm.Furthermore,the variation in the minimumfluidized voidage was determined experimentally at the same conditions.The experimental data revealed that the Umf directly varied with particle size and inversely with temperature,whileεmf increases slightly with temperature based on the measurements of height at incipient fluidization.However,for all particle sizes used in this test,temperatures above 700℃ has a marginal effect on Umf.The results were compared with many empirical equations,and it was found that the experimental result is still in an acceptable range of empirical equations used.In which,our findings are not well predicted by the widely accepted correlations reported in the literature.Therefore,a new predicted equation has been developed that also accounts for the affecting of mean particle size in addition to other parameters.A good mean relative deviation of 5.473% between the experimental data and the predicted values was estimated from the correlation of the effective dimensionless group.Furthermore,the experimental work revealed that the minimum fluidizing velocity was not affected by the height of the bed even at high temperature.展开更多
Fluidized-bed reactors are widely employed in various high-temperature industrial processes.Thus,it is crucial to understand the temperature effect on various fluidization phenomena,specifically the minimum fluidizati...Fluidized-bed reactors are widely employed in various high-temperature industrial processes.Thus,it is crucial to understand the temperature effect on various fluidization phenomena,specifically the minimum fluidization velocity(U_(mf))that governs various aspects of fluidized bed behavior.In this study,we comprehensively analyze U_(mf) data from the literature to unravel the complexity and underlying mechanisms of temperature influence on this critical velocity.The research examines experimental data encompassing a wide range of temperatures,pressures,and solid particles.The analysis reveals that the influence of temperature on U_(mf) is fundamentally determined by the relative importance of hydrodynamic forces and interparticle forces within fluidized beds and is realized by three distinctive temperature-induced changes:gas properties,bed voidage,and physiochemical characteristics of particles.On this basis,an equation is derived to enable predictions of temperature influences on the minimum fluidization velocity under broad temperature conditions.展开更多
The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidiz...The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidization velocity measurements of low density(28-638 kg/m^(3)),0.80-1.13 mm Styrofoam particles in a fluidized bed with a height of 4.5 m and 0.2 m diameter.The average absolute relative deviation for the predicted minimum fluidization velocity for particles below 300 kg/m^(3) was above 40%using the studied common correlations.A modified Wen and Yu correlation was thus proposed based on novel and past measurements with low-density and small-diameter particles,expanding the range for predicting U_(mf).The new correlation predicted U_(mf) with deviations below 15%for ST028,ST122 and ST300.This modified correlation also improved U_(mf) predictions for comparable particles from a previous study,demonstrating its validity for a larger range of low-density particles.展开更多
To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average...To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.展开更多
Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 MPa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The in...Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 MPa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The influence of pressure to the minimum fluidization velocities is stronger for larger particles than for smaller ones. Based on the test results and Ergun equation, an experience equation of minimum fluidization velocity is proposed and the calculation results are comparable to other researchers' results.展开更多
This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered...This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered fluidized beds.Three powders with Gaussian size distribution and different distribution widths were used in the experiments.An increase in U_(mf)with increasing the average particle diameter,particle loading,and the tapered angle was observed.There was also a nonmonotonic behavior of Umf as the Gaussian distribution width increased.An empirical correlation including dimensionless groups for predicting Umf in tapered beds was developed in which the effect of distribution width was considered.The proposed correlation predictions were in good agreement with the experimental data,with a maximum deviation of 16.5%and average and standard deviations of,respectively,6.4%and 7.4%.The proposed correlation was also compared with three earlier models,and their accuracy was discussed.展开更多
The minimum fluidization velocity of a fluid-solid particle fluidized bed is the primary focus of this paper.The computationally economic Eulerian Granular model has been used to analyze fluidization for both gas-soli...The minimum fluidization velocity of a fluid-solid particle fluidized bed is the primary focus of this paper.The computationally economic Eulerian Granular model has been used to analyze fluidization for both gas-solid particle and liquid-solid particle fluidized beds.The conventional approach of finding minimum fluidization velocity(umf)is either with a pressure drop across the particle bed or the change in bed height.However,these parameters are often unstable and cannot be used to generalize the degree of fluidization accurately.In this paper,the dominant factor of unstable pressure drop estimation in the 2D Two-Fluid Model(TFM)and a key non-dimensional Euler number has been investigated in deter-mining minimum fluidization velocity for different quasi-2D fluidized beds for different bed sizes,par-ticle sizes,and particle numbers.Averaging assumptions and limitations of these numerical models are discussed in detail for four different fluidized bed cases.A comparative study of the drag model shows little to no influence in unstable pressure drop estimation near fluidization velocity,and all drag models perform similarly.It is observed that particle-particle collision is not the dominant reason for unstable pressure drop near minimum fluidization.Instead,wall effects on the particle bed including frictional losses and wall-particle collision play a key role in unstable pressure drop calculation for the quasi-2D fluidized beds.Pressure drop characteristics alone do not suffice to obtain minimum fluidization ve-locity with 2D TFM using existing models.Thus,a different approach has been proposed to investigate minimum fluidization involving the Euler number,which has shown promising performance in deter-mining minimum fluidization velocity and characterizing fluidization with 2D TFM.Results show con-sistency in Euler number characteristics for all different fluidized bed cases considered in this paper.This can revitalize computationally economic 2D Eulerian simulations,increase the range of possible appli-cations,and provide guidance to the future development of computationally efficient and more accurate numerical models,and empirical correlations for minimum fluidization velocity.展开更多
In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curv...In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curves, the bed density stability and the average bubble rise velocity Uaunder different agitation conditions. The results indicated that a lower bed pressure drop(without considering lower gas velocity in a fixed bed stage) and higher minimum fluidized velocity are achieved with increasing agitation speed.The height d(distance between the lower blades and air distribution plate) at which the agitation paddle was located had a considerable effect on the stability of the bed density at 9.36 cm/s < U < 10.70 cm/s. The higher the value of d, the better the stability, and the standard deviation of the bed density fluctuation r dropped to 0.0364 g/cm^3 at the ideal condition of d = 40 mm. The agitation speed also had a significant influence on the fluidization performance, and r was only 0.0286 g/cm^3 at an agitation speed of N = 75 r/min. The average bubble rise velocity decreased significantly with increasing agitation speed under the operating condition of 1.50 cm/s < U–U_(mf)< 3.50 cm/s. This shows that appropriate agitation contributes to a significant improvement in the fluidization quality in a fluidized bed, and enhances the separation performance of a fluidized bed.展开更多
An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas v...An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with the fluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gas velocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidization behavior could be investigated. The results showed that the bed density in top feeding reactor responded more stably to the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on this study, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimization of bottom feeding reactor will be needed.展开更多
Experimental study of an airlift with a magnetically stabilized bed in the riser bottom has been performed. External magnetic field allows easy control of magnetized bed structure and liquid circulation rate. Minimum ...Experimental study of an airlift with a magnetically stabilized bed in the riser bottom has been performed. External magnetic field allows easy control of magnetized bed structure and liquid circulation rate. Minimum stabilization and fluidization conditions have been determined experimentally and by a three-line graphical method. Semi-empirical data correlations of sections of the experimental curves have been performed. Scaling relationships known from non-magnetic airlift are applicable too, but with the assumption that the magnetic field affects the loop friction coefficient only.展开更多
Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limite...Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limited, especially at temperatures exceeding 1000 ℃, making it challenging to develop high-temperature fluidized bed applications. This paper presents an experimental investigation on the turbulent fluidization onset velocity (U_(c)), measured in a 30 mm diameter bed using corundum particles with average diameters from 0.68 mm to 1.58 mm in temperatures from ambient to 1600 ℃. Experimental results reveal that U_(c) increases with temperature up to 600 ℃, stabilizes within the 600–1200 ℃ range, and then decreases above 1200 ℃, demonstrating the varying relative significance of hydrodynamic and interparticle forces at different temperatures. To help design and operate high-temperature applications of turbulent fluidization, we developed U_(c) correlations based on experimental data from both literature sources and this study, covering temperatures of up to 1600 ℃ and particles of Groups A to D.展开更多
The influence of different factors on the fiuidization of a binary mixture of sisal residue and sand was investigated.The particle sizes of the sand and sisal residue were varied from 0.2to 0.8mm and the biomass mass ...The influence of different factors on the fiuidization of a binary mixture of sisal residue and sand was investigated.The particle sizes of the sand and sisal residue were varied from 0.2to 0.8mm and the biomass mass fractions from 2% to 9%.Some segregation was noted,and a significant relationship was found among the final fluidization velocity (Uff),the biomass and sand sizes,and the biomass mass fraction.A novel model was developed for predicting Uff,leading to an average discrepancy of 12.69% between the measured and predicted Uff compared with the best match of 15.32% when using a model from a previous paper.The new model was applied to data from studies using other biomass and a broad range of particle characteristics.The average divergences from measured values when using the new model were 7.9% for corn cob and walnut shell,and 20.5% for sweet sorghum bagasse,tobacco residue, and soy hulls.These were superior to the values derived using other models.Our results confirm the accuracy of the model developed in this work and show that it represents a viable alternative way to calculate Uff for a binary mixture of sand and biomass.展开更多
Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for ...Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fiuidization velocity of density-different mixtures, as the difference in the expres- sions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here.展开更多
Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid ve...Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD-DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is infuenced by the density and size of particles and weakly affected by riser height and diameter, A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD.展开更多
The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated a...The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated air was used as the fluidizing gas whereas SiO2. Al2O3, TiO2, ZrSi, BaSO4 were solid particles. Mechanical vibration amplitudes were 0.1, 0.25, 0.35, 0.45mm, while the frequencies were 5, 20, 30, 40 Hz to investigate the effects of frequency and amplitude of mechanical vibration on minimum fluidization velocity, bed pressure drop, bed expansion, and the agglomerate size and size distribution, A novel technique was employed to determine the apparent minimum fluidization velocity from pressure drop signals. Richardson-Zaki equation was employed as nano-particles showed fluid like behavior when fluidized. The average size of agglomerates formed on top of the bed was smaller than those at the bottom, Size distribution of agglomerates on top was also more uniform compared to those near the distributor. Larger agglomerates at the bottom of the bed formed a small fraction of the bed particles. Average size of submicron agglomerates decreased with increasing the frequency of vibration, however nano particles were less sensitive to change in vibration frequency. Mechanical vibration enhanced the quality of fluidization by reducing channeling and rat-holing phenomena caused by interparticle cohesive forces.展开更多
Towards the development of a predictive model for computing the minimum fluidization velocity, the volume-contraction phenomenon arising from the mixing of unequal solid species is accounted for in the prediction of t...Towards the development of a predictive model for computing the minimum fluidization velocity, the volume-contraction phenomenon arising from the mixing of unequal solid species is accounted for in the prediction of the bed void fraction of binary-solid mixtures at the incipient fluidization conditions. Com- parison with experimental data obtained from the literature clearly shows that significantly improved predictions are obtained except for cases where the stratification pattern whether arising from the slow defluidization or the difference in the densities of the two species affects the mixing of the constituent species.展开更多
The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the...The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport.To this end,this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles,including the flow characteristics of the fast fluidization,the transition condition between the fast fluidization and pneumatic transport,the determination methods of the transport velocity utr and saturation carrying capacity G_(s)* and the influencing factors on these two parameters.Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler,and result in plenty of prediction correlations for utr and G_(s)*.Nonetheless,owing to insufficient data available on Geldart group B particles,especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses,the existing correlations are not well suited for the prediction of u_(tr) and G_(s)* of Geldart group B particles.Thus,further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.展开更多
Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simp...Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.展开更多
During the solid fluidization exploitation of marine natural gas hydrates,the hydrate particles and cuttings produced via excavation and crushing are transported by the drilling mud.The potential flow safety issues ar...During the solid fluidization exploitation of marine natural gas hydrates,the hydrate particles and cuttings produced via excavation and crushing are transported by the drilling mud.The potential flow safety issues arising during the transport process,such as the blockage of pipelines and equipment,have attracted considerable attention.This study aims to investigate the impact of hydrate adhesion features,including agglomeration,cohesion,and deposition,on the flow transport processes in solid fluidization exploitation and to provide a reference for the design and application of multiphase hydrate slurry transport in solid fluidization exploitation.We established a numerical simulation model that considers the hydrate adhesion properties using the coupled computational fluid dynamics and discrete element method(CFD-DEM)for the multiphase mixed transport in solid fluidization exploitation.An appropriate model to simulate the adhesion force of the hydrate particles and the corresponding parameter values were obtained.The conclusions obtained are as follows.Under the same operating conditions,a stationary bed is more likely to form in the transport process due to the hydrate adhesion forces;adhesion forces can increase the critical deposition velocity of the mixture of hydrate particles and cuttings.Hydrate adhesion lowers the height of the solid-phase moving bed,while the agglomeration and cohesion of particles can intensify the aggregation and deposition of hydrate debris and cuttings at the bottom of the pipe.These particles tend to form a deposit bed rather than a moving bed,which reduces the effective flow area of the pipeline and increases the risk of blockage.展开更多
Lignite is a low rank coal which is evenly distributed throughout the world and accounts for 45% of the total coal reserves. As it has a higher moisture content, its moisture content must be reduced in order to utiliz...Lignite is a low rank coal which is evenly distributed throughout the world and accounts for 45% of the total coal reserves. As it has a higher moisture content, its moisture content must be reduced in order to utilize it in power plant. In the present work, experiments on lignite has been done using a lab scale fluidized-bed reactor. Drying lignite through fluidized-bed reactor has a higher drying rate because there is good contact between particles and gas in the fluidized-bed reactor. Fluidized-bed drying can use air of 1.5 times of the minimum fluidizing velocity performance at bubbling fluidized-bed. Experiments have been performed on coal particle sizes of 0.3-1 mm, 1-1.18 mm and 1.18-2.8 mm, with operating temperatures being 100℃, 125℃ and 150℃, respectively. It is found that fluidization has a higher drying rate due to the heat transfer rate through air velocity. Hence, moisture content in lignite can be dried to a desired value with a time interval of 10 rain. The experiment through fluidized-bed reactor is expected to be useful for saving money and time.展开更多
文摘The impact of temperature and particle size on minimumfluidizing velocity was studied and analyzed in a small pilot scale of bubbling fluidized bed reactor.This study was devoted to providing some data about fluidization to the literature under high temperature conditions.The experiments were carried out to evaluate the minimum fluidizing velocity over a vast range of temperature levels from 20℃ to 850℃ using silica sand with a particle size of 300-425μm,425-500μm,500-600μm,and 600-710μm.Furthermore,the variation in the minimumfluidized voidage was determined experimentally at the same conditions.The experimental data revealed that the Umf directly varied with particle size and inversely with temperature,whileεmf increases slightly with temperature based on the measurements of height at incipient fluidization.However,for all particle sizes used in this test,temperatures above 700℃ has a marginal effect on Umf.The results were compared with many empirical equations,and it was found that the experimental result is still in an acceptable range of empirical equations used.In which,our findings are not well predicted by the widely accepted correlations reported in the literature.Therefore,a new predicted equation has been developed that also accounts for the affecting of mean particle size in addition to other parameters.A good mean relative deviation of 5.473% between the experimental data and the predicted values was estimated from the correlation of the effective dimensionless group.Furthermore,the experimental work revealed that the minimum fluidizing velocity was not affected by the height of the bed even at high temperature.
基金supported by the National Natural Science Foundation of China(grant No.U22A20410).
文摘Fluidized-bed reactors are widely employed in various high-temperature industrial processes.Thus,it is crucial to understand the temperature effect on various fluidization phenomena,specifically the minimum fluidization velocity(U_(mf))that governs various aspects of fluidized bed behavior.In this study,we comprehensively analyze U_(mf) data from the literature to unravel the complexity and underlying mechanisms of temperature influence on this critical velocity.The research examines experimental data encompassing a wide range of temperatures,pressures,and solid particles.The analysis reveals that the influence of temperature on U_(mf) is fundamentally determined by the relative importance of hydrodynamic forces and interparticle forces within fluidized beds and is realized by three distinctive temperature-induced changes:gas properties,bed voidage,and physiochemical characteristics of particles.On this basis,an equation is derived to enable predictions of temperature influences on the minimum fluidization velocity under broad temperature conditions.
文摘The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidization velocity measurements of low density(28-638 kg/m^(3)),0.80-1.13 mm Styrofoam particles in a fluidized bed with a height of 4.5 m and 0.2 m diameter.The average absolute relative deviation for the predicted minimum fluidization velocity for particles below 300 kg/m^(3) was above 40%using the studied common correlations.A modified Wen and Yu correlation was thus proposed based on novel and past measurements with low-density and small-diameter particles,expanding the range for predicting U_(mf).The new correlation predicted U_(mf) with deviations below 15%for ST028,ST122 and ST300.This modified correlation also improved U_(mf) predictions for comparable particles from a previous study,demonstrating its validity for a larger range of low-density particles.
基金The National Natural Science Foundation of China(No50576013)
文摘To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.
文摘Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 MPa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The influence of pressure to the minimum fluidization velocities is stronger for larger particles than for smaller ones. Based on the test results and Ergun equation, an experience equation of minimum fluidization velocity is proposed and the calculation results are comparable to other researchers' results.
文摘This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered fluidized beds.Three powders with Gaussian size distribution and different distribution widths were used in the experiments.An increase in U_(mf)with increasing the average particle diameter,particle loading,and the tapered angle was observed.There was also a nonmonotonic behavior of Umf as the Gaussian distribution width increased.An empirical correlation including dimensionless groups for predicting Umf in tapered beds was developed in which the effect of distribution width was considered.The proposed correlation predictions were in good agreement with the experimental data,with a maximum deviation of 16.5%and average and standard deviations of,respectively,6.4%and 7.4%.The proposed correlation was also compared with three earlier models,and their accuracy was discussed.
文摘The minimum fluidization velocity of a fluid-solid particle fluidized bed is the primary focus of this paper.The computationally economic Eulerian Granular model has been used to analyze fluidization for both gas-solid particle and liquid-solid particle fluidized beds.The conventional approach of finding minimum fluidization velocity(umf)is either with a pressure drop across the particle bed or the change in bed height.However,these parameters are often unstable and cannot be used to generalize the degree of fluidization accurately.In this paper,the dominant factor of unstable pressure drop estimation in the 2D Two-Fluid Model(TFM)and a key non-dimensional Euler number has been investigated in deter-mining minimum fluidization velocity for different quasi-2D fluidized beds for different bed sizes,par-ticle sizes,and particle numbers.Averaging assumptions and limitations of these numerical models are discussed in detail for four different fluidized bed cases.A comparative study of the drag model shows little to no influence in unstable pressure drop estimation near fluidization velocity,and all drag models perform similarly.It is observed that particle-particle collision is not the dominant reason for unstable pressure drop near minimum fluidization.Instead,wall effects on the particle bed including frictional losses and wall-particle collision play a key role in unstable pressure drop calculation for the quasi-2D fluidized beds.Pressure drop characteristics alone do not suffice to obtain minimum fluidization ve-locity with 2D TFM using existing models.Thus,a different approach has been proposed to investigate minimum fluidization involving the Euler number,which has shown promising performance in deter-mining minimum fluidization velocity and characterizing fluidization with 2D TFM.Results show con-sistency in Euler number characteristics for all different fluidized bed cases considered in this paper.This can revitalize computationally economic 2D Eulerian simulations,increase the range of possible appli-cations,and provide guidance to the future development of computationally efficient and more accurate numerical models,and empirical correlations for minimum fluidization velocity.
基金financial support by the National Key Programs for Fundamental Research and Development of China(No.2012CB214904)the National Natural Science Foundation of China(Nos.51174203,51134022)
文摘In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curves, the bed density stability and the average bubble rise velocity Uaunder different agitation conditions. The results indicated that a lower bed pressure drop(without considering lower gas velocity in a fixed bed stage) and higher minimum fluidized velocity are achieved with increasing agitation speed.The height d(distance between the lower blades and air distribution plate) at which the agitation paddle was located had a considerable effect on the stability of the bed density at 9.36 cm/s < U < 10.70 cm/s. The higher the value of d, the better the stability, and the standard deviation of the bed density fluctuation r dropped to 0.0364 g/cm^3 at the ideal condition of d = 40 mm. The agitation speed also had a significant influence on the fluidization performance, and r was only 0.0286 g/cm^3 at an agitation speed of N = 75 r/min. The average bubble rise velocity decreased significantly with increasing agitation speed under the operating condition of 1.50 cm/s < U–U_(mf)< 3.50 cm/s. This shows that appropriate agitation contributes to a significant improvement in the fluidization quality in a fluidized bed, and enhances the separation performance of a fluidized bed.
文摘An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with the fluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gas velocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidization behavior could be investigated. The results showed that the bed density in top feeding reactor responded more stably to the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on this study, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimization of bottom feeding reactor will be needed.
文摘Experimental study of an airlift with a magnetically stabilized bed in the riser bottom has been performed. External magnetic field allows easy control of magnetized bed structure and liquid circulation rate. Minimum stabilization and fluidization conditions have been determined experimentally and by a three-line graphical method. Semi-empirical data correlations of sections of the experimental curves have been performed. Scaling relationships known from non-magnetic airlift are applicable too, but with the assumption that the magnetic field affects the loop friction coefficient only.
基金supported by the National Natural Science Foundation of China(grant No.U22A20410).
文摘Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limited, especially at temperatures exceeding 1000 ℃, making it challenging to develop high-temperature fluidized bed applications. This paper presents an experimental investigation on the turbulent fluidization onset velocity (U_(c)), measured in a 30 mm diameter bed using corundum particles with average diameters from 0.68 mm to 1.58 mm in temperatures from ambient to 1600 ℃. Experimental results reveal that U_(c) increases with temperature up to 600 ℃, stabilizes within the 600–1200 ℃ range, and then decreases above 1200 ℃, demonstrating the varying relative significance of hydrodynamic and interparticle forces at different temperatures. To help design and operate high-temperature applications of turbulent fluidization, we developed U_(c) correlations based on experimental data from both literature sources and this study, covering temperatures of up to 1600 ℃ and particles of Groups A to D.
文摘The influence of different factors on the fiuidization of a binary mixture of sisal residue and sand was investigated.The particle sizes of the sand and sisal residue were varied from 0.2to 0.8mm and the biomass mass fractions from 2% to 9%.Some segregation was noted,and a significant relationship was found among the final fluidization velocity (Uff),the biomass and sand sizes,and the biomass mass fraction.A novel model was developed for predicting Uff,leading to an average discrepancy of 12.69% between the measured and predicted Uff compared with the best match of 15.32% when using a model from a previous paper.The new model was applied to data from studies using other biomass and a broad range of particle characteristics.The average divergences from measured values when using the new model were 7.9% for corn cob and walnut shell,and 20.5% for sweet sorghum bagasse,tobacco residue, and soy hulls.These were superior to the values derived using other models.Our results confirm the accuracy of the model developed in this work and show that it represents a viable alternative way to calculate Uff for a binary mixture of sand and biomass.
基金the Deanship of Scientific Research at King Saud University for funding this work through the Research Group Project Number RGP-VPP-188
文摘Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fiuidization velocity of density-different mixtures, as the difference in the expres- sions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here.
基金long term support from the National Natural Science Foundation of China(Grant Nos.21222603 and 91434121)the Ministry of Science and Technology of China(Grant No.2013BAC12B01)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA07080301)
文摘Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD-DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is infuenced by the density and size of particles and weakly affected by riser height and diameter, A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD.
基金the financial support received from Ontario Research Fund for this study
文摘The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated air was used as the fluidizing gas whereas SiO2. Al2O3, TiO2, ZrSi, BaSO4 were solid particles. Mechanical vibration amplitudes were 0.1, 0.25, 0.35, 0.45mm, while the frequencies were 5, 20, 30, 40 Hz to investigate the effects of frequency and amplitude of mechanical vibration on minimum fluidization velocity, bed pressure drop, bed expansion, and the agglomerate size and size distribution, A novel technique was employed to determine the apparent minimum fluidization velocity from pressure drop signals. Richardson-Zaki equation was employed as nano-particles showed fluid like behavior when fluidized. The average size of agglomerates formed on top of the bed was smaller than those at the bottom, Size distribution of agglomerates on top was also more uniform compared to those near the distributor. Larger agglomerates at the bottom of the bed formed a small fraction of the bed particles. Average size of submicron agglomerates decreased with increasing the frequency of vibration, however nano particles were less sensitive to change in vibration frequency. Mechanical vibration enhanced the quality of fluidization by reducing channeling and rat-holing phenomena caused by interparticle cohesive forces.
基金supported by the SABIC grant (Project ENG-3034),King Saud University,Riyadh
文摘Towards the development of a predictive model for computing the minimum fluidization velocity, the volume-contraction phenomenon arising from the mixing of unequal solid species is accounted for in the prediction of the bed void fraction of binary-solid mixtures at the incipient fluidization conditions. Com- parison with experimental data obtained from the literature clearly shows that significantly improved predictions are obtained except for cases where the stratification pattern whether arising from the slow defluidization or the difference in the densities of the two species affects the mixing of the constituent species.
基金supported by the National Key Research Plan (2019YFE0102100)the Huaneng Group Science and Technology Research Project (HNKj20-H50)the C9 University Science and Technology Project (201903D421009).
文摘The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport.To this end,this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles,including the flow characteristics of the fast fluidization,the transition condition between the fast fluidization and pneumatic transport,the determination methods of the transport velocity utr and saturation carrying capacity G_(s)* and the influencing factors on these two parameters.Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler,and result in plenty of prediction correlations for utr and G_(s)*.Nonetheless,owing to insufficient data available on Geldart group B particles,especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses,the existing correlations are not well suited for the prediction of u_(tr) and G_(s)* of Geldart group B particles.Thus,further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.
基金Supports from the Iran National Science Foundation(INSF) in lran(No.91001766)
文摘Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.
基金supported by the National Natural Science Foundation of China under the projects“Characteristics of argillaceous-silt natural gas hydrate reservoirs in the South China Sea and the gas-liquid-solid multiphase heat and mass transfer mechanisms”(U19B2005)“Study on the decomposition mechanism and transportation rules of natural has hydrate slurry in the solid fluidization exploitation of combustible ice”(51874323).
文摘During the solid fluidization exploitation of marine natural gas hydrates,the hydrate particles and cuttings produced via excavation and crushing are transported by the drilling mud.The potential flow safety issues arising during the transport process,such as the blockage of pipelines and equipment,have attracted considerable attention.This study aims to investigate the impact of hydrate adhesion features,including agglomeration,cohesion,and deposition,on the flow transport processes in solid fluidization exploitation and to provide a reference for the design and application of multiphase hydrate slurry transport in solid fluidization exploitation.We established a numerical simulation model that considers the hydrate adhesion properties using the coupled computational fluid dynamics and discrete element method(CFD-DEM)for the multiphase mixed transport in solid fluidization exploitation.An appropriate model to simulate the adhesion force of the hydrate particles and the corresponding parameter values were obtained.The conclusions obtained are as follows.Under the same operating conditions,a stationary bed is more likely to form in the transport process due to the hydrate adhesion forces;adhesion forces can increase the critical deposition velocity of the mixture of hydrate particles and cuttings.Hydrate adhesion lowers the height of the solid-phase moving bed,while the agglomeration and cohesion of particles can intensify the aggregation and deposition of hydrate debris and cuttings at the bottom of the pipe.These particles tend to form a deposit bed rather than a moving bed,which reduces the effective flow area of the pipeline and increases the risk of blockage.
基金supported by the Power Generation & Electricity Delivery of the Korea Institute of Energy Technology Evaluation and Planning (Grant No. NP2008-0092-05) grant funded by the Korea Government Ministry of Knowledge Economy
文摘Lignite is a low rank coal which is evenly distributed throughout the world and accounts for 45% of the total coal reserves. As it has a higher moisture content, its moisture content must be reduced in order to utilize it in power plant. In the present work, experiments on lignite has been done using a lab scale fluidized-bed reactor. Drying lignite through fluidized-bed reactor has a higher drying rate because there is good contact between particles and gas in the fluidized-bed reactor. Fluidized-bed drying can use air of 1.5 times of the minimum fluidizing velocity performance at bubbling fluidized-bed. Experiments have been performed on coal particle sizes of 0.3-1 mm, 1-1.18 mm and 1.18-2.8 mm, with operating temperatures being 100℃, 125℃ and 150℃, respectively. It is found that fluidization has a higher drying rate due to the heat transfer rate through air velocity. Hence, moisture content in lignite can be dried to a desired value with a time interval of 10 rain. The experiment through fluidized-bed reactor is expected to be useful for saving money and time.