期刊文献+
共找到401篇文章
< 1 2 21 >
每页显示 20 50 100
Effect of elevated temperature and silica sand particle size on minimum fluidization velocity in an atmospheric bubbling fluidized bed 被引量:3
1
作者 A.Al-Farraji Haidar Taofeeq 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期2985-2992,共8页
The impact of temperature and particle size on minimumfluidizing velocity was studied and analyzed in a small pilot scale of bubbling fluidized bed reactor.This study was devoted to providing some data about fluidizat... The impact of temperature and particle size on minimumfluidizing velocity was studied and analyzed in a small pilot scale of bubbling fluidized bed reactor.This study was devoted to providing some data about fluidization to the literature under high temperature conditions.The experiments were carried out to evaluate the minimum fluidizing velocity over a vast range of temperature levels from 20℃ to 850℃ using silica sand with a particle size of 300-425μm,425-500μm,500-600μm,and 600-710μm.Furthermore,the variation in the minimumfluidized voidage was determined experimentally at the same conditions.The experimental data revealed that the Umf directly varied with particle size and inversely with temperature,whileεmf increases slightly with temperature based on the measurements of height at incipient fluidization.However,for all particle sizes used in this test,temperatures above 700℃ has a marginal effect on Umf.The results were compared with many empirical equations,and it was found that the experimental result is still in an acceptable range of empirical equations used.In which,our findings are not well predicted by the widely accepted correlations reported in the literature.Therefore,a new predicted equation has been developed that also accounts for the affecting of mean particle size in addition to other parameters.A good mean relative deviation of 5.473% between the experimental data and the predicted values was estimated from the correlation of the effective dimensionless group.Furthermore,the experimental work revealed that the minimum fluidizing velocity was not affected by the height of the bed even at high temperature. 展开更多
关键词 minimum fluidization velocity VOIDAGE Elevated temperature Silica sand Fluidized bed Bed height
下载PDF
Temperature influence on minimum fluidization velocity:Complexity,mechanism,and solutions 被引量:1
2
作者 Qingjin Zhang Liangliang Fu +1 位作者 Guangwen Xu Dingrong Bai 《Particuology》 SCIE EI CAS CSCD 2024年第5期344-349,共6页
Fluidized-bed reactors are widely employed in various high-temperature industrial processes.Thus,it is crucial to understand the temperature effect on various fluidization phenomena,specifically the minimum fluidizati... Fluidized-bed reactors are widely employed in various high-temperature industrial processes.Thus,it is crucial to understand the temperature effect on various fluidization phenomena,specifically the minimum fluidization velocity(U_(mf))that governs various aspects of fluidized bed behavior.In this study,we comprehensively analyze U_(mf) data from the literature to unravel the complexity and underlying mechanisms of temperature influence on this critical velocity.The research examines experimental data encompassing a wide range of temperatures,pressures,and solid particles.The analysis reveals that the influence of temperature on U_(mf) is fundamentally determined by the relative importance of hydrodynamic forces and interparticle forces within fluidized beds and is realized by three distinctive temperature-induced changes:gas properties,bed voidage,and physiochemical characteristics of particles.On this basis,an equation is derived to enable predictions of temperature influences on the minimum fluidization velocity under broad temperature conditions. 展开更多
关键词 High-temperature gas-solids fluidized beds minimum fluidization velocity Hydrodynamic forces Interparticle forces Bed voidage
原文传递
Modified correlation for minimum fluidization velocity of low-density particles in inverse liquid-solid fluidized beds
3
作者 Michael Nelson Saleh Srabet +2 位作者 Tian Nan Dominic Pjontek Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2022年第12期56-62,共7页
The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidiz... The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidization velocity measurements of low density(28-638 kg/m^(3)),0.80-1.13 mm Styrofoam particles in a fluidized bed with a height of 4.5 m and 0.2 m diameter.The average absolute relative deviation for the predicted minimum fluidization velocity for particles below 300 kg/m^(3) was above 40%using the studied common correlations.A modified Wen and Yu correlation was thus proposed based on novel and past measurements with low-density and small-diameter particles,expanding the range for predicting U_(mf).The new correlation predicted U_(mf) with deviations below 15%for ST028,ST122 and ST300.This modified correlation also improved U_(mf) predictions for comparable particles from a previous study,demonstrating its validity for a larger range of low-density particles. 展开更多
关键词 Liquid-solid fluidization Inverse fluidization minimum fluidization velocity Low-density particles
原文传递
Fluidization characteristics of magnetic particles and determination of stable fluidization zone in magnetically fluidized bed 被引量:1
4
作者 王迎慧 归柯庭 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期523-527,共5页
To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average... To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions. 展开更多
关键词 magnetically fluidized bed fluidization characteristics stable fluidization minimum bubbling gas velocity pressure-drop fluctuation
下载PDF
Effect of Pressure on Minimum Fluidization Velocity 被引量:5
5
作者 Zhu Zhiping Na Yongjie Lu Qinggang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第3期264-269,共6页
Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 MPa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The in... Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 MPa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The influence of pressure to the minimum fluidization velocities is stronger for larger particles than for smaller ones. Based on the test results and Ergun equation, an experience equation of minimum fluidization velocity is proposed and the calculation results are comparable to other researchers' results. 展开更多
关键词 minimum fluidization velocity PRESSURE Ergun equation
原文传递
Effect of Gaussian size distribution width on minimum fluidization velocity in tapered gas–solid fluidized beds
6
作者 Mojtaba Rasteh Goodarz Ahmadi S.H.Hosseini 《Particuology》 SCIE EI CAS CSCD 2022年第7期71-84,共14页
This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered... This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered fluidized beds.Three powders with Gaussian size distribution and different distribution widths were used in the experiments.An increase in U_(mf)with increasing the average particle diameter,particle loading,and the tapered angle was observed.There was also a nonmonotonic behavior of Umf as the Gaussian distribution width increased.An empirical correlation including dimensionless groups for predicting Umf in tapered beds was developed in which the effect of distribution width was considered.The proposed correlation predictions were in good agreement with the experimental data,with a maximum deviation of 16.5%and average and standard deviations of,respectively,6.4%and 7.4%.The proposed correlation was also compared with three earlier models,and their accuracy was discussed. 展开更多
关键词 Tapered fluidized bed minimum fluidization velocity Gaussian size distribution Distribution width Dimensional analysis
原文传递
Performance analysis of a 2D numerical model in estimating minimum fluidization velocity for fluidized beds
7
作者 Nazmul Hossain Ralph Metcalfe 《Particuology》 SCIE EI CAS CSCD 2023年第6期116-127,共12页
The minimum fluidization velocity of a fluid-solid particle fluidized bed is the primary focus of this paper.The computationally economic Eulerian Granular model has been used to analyze fluidization for both gas-soli... The minimum fluidization velocity of a fluid-solid particle fluidized bed is the primary focus of this paper.The computationally economic Eulerian Granular model has been used to analyze fluidization for both gas-solid particle and liquid-solid particle fluidized beds.The conventional approach of finding minimum fluidization velocity(umf)is either with a pressure drop across the particle bed or the change in bed height.However,these parameters are often unstable and cannot be used to generalize the degree of fluidization accurately.In this paper,the dominant factor of unstable pressure drop estimation in the 2D Two-Fluid Model(TFM)and a key non-dimensional Euler number has been investigated in deter-mining minimum fluidization velocity for different quasi-2D fluidized beds for different bed sizes,par-ticle sizes,and particle numbers.Averaging assumptions and limitations of these numerical models are discussed in detail for four different fluidized bed cases.A comparative study of the drag model shows little to no influence in unstable pressure drop estimation near fluidization velocity,and all drag models perform similarly.It is observed that particle-particle collision is not the dominant reason for unstable pressure drop near minimum fluidization.Instead,wall effects on the particle bed including frictional losses and wall-particle collision play a key role in unstable pressure drop calculation for the quasi-2D fluidized beds.Pressure drop characteristics alone do not suffice to obtain minimum fluidization ve-locity with 2D TFM using existing models.Thus,a different approach has been proposed to investigate minimum fluidization involving the Euler number,which has shown promising performance in deter-mining minimum fluidization velocity and characterizing fluidization with 2D TFM.Results show con-sistency in Euler number characteristics for all different fluidized bed cases considered in this paper.This can revitalize computationally economic 2D Eulerian simulations,increase the range of possible appli-cations,and provide guidance to the future development of computationally efficient and more accurate numerical models,and empirical correlations for minimum fluidization velocity. 展开更多
关键词 Fluidized bed minimum fluidization velocity Fluid-solid particle flow Eulerian granularmultiphase model
原文传递
Effect of agitation on the characteristics of air dense medium fluidization 被引量:2
8
作者 Wang Yanan Luo Zhenfu +1 位作者 Huang Ge Ren Baojin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期383-387,共5页
In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curv... In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curves, the bed density stability and the average bubble rise velocity Uaunder different agitation conditions. The results indicated that a lower bed pressure drop(without considering lower gas velocity in a fixed bed stage) and higher minimum fluidized velocity are achieved with increasing agitation speed.The height d(distance between the lower blades and air distribution plate) at which the agitation paddle was located had a considerable effect on the stability of the bed density at 9.36 cm/s < U < 10.70 cm/s. The higher the value of d, the better the stability, and the standard deviation of the bed density fluctuation r dropped to 0.0364 g/cm^3 at the ideal condition of d = 40 mm. The agitation speed also had a significant influence on the fluidization performance, and r was only 0.0286 g/cm^3 at an agitation speed of N = 75 r/min. The average bubble rise velocity decreased significantly with increasing agitation speed under the operating condition of 1.50 cm/s < U–U_(mf)< 3.50 cm/s. This shows that appropriate agitation contributes to a significant improvement in the fluidization quality in a fluidized bed, and enhances the separation performance of a fluidized bed. 展开更多
关键词 Agitation Fluidized bed Bed pressure drop minimum fluidization velocity Bed density Bubble
下载PDF
The Influence of Feeding Method on Fluidization Behavior of Fixed Fluidized Bed
9
作者 Ren Shihong Mao Anguo Wei Xiaoli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第1期13-18,共6页
An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas v... An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with the fluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gas velocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidization behavior could be investigated. The results showed that the bed density in top feeding reactor responded more stably to the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on this study, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimization of bottom feeding reactor will be needed. 展开更多
关键词 feeding method fixed fluidized bed fluidization behavior bed density operating gas velocity
下载PDF
EXTERNAL-LOOP AIRLIFT MAGNETICALLY STABILIZED BED--MINIMUM STABILIZATION AND FLUIDIZATION CONDITIONS 被引量:1
10
作者 Jordan Hristov 《China Particuology》 SCIE EI CAS CSCD 2005年第4期197-203,共7页
Experimental study of an airlift with a magnetically stabilized bed in the riser bottom has been performed. External magnetic field allows easy control of magnetized bed structure and liquid circulation rate. Minimum ... Experimental study of an airlift with a magnetically stabilized bed in the riser bottom has been performed. External magnetic field allows easy control of magnetized bed structure and liquid circulation rate. Minimum stabilization and fluidization conditions have been determined experimentally and by a three-line graphical method. Semi-empirical data correlations of sections of the experimental curves have been performed. Scaling relationships known from non-magnetic airlift are applicable too, but with the assumption that the magnetic field affects the loop friction coefficient only. 展开更多
关键词 minimum fluidization magnetic field stabilized beds gas-liquid-solid fluidization airlift reactor
原文传递
The transition to turbulent fluidization in a gas-solid fluidized bed operating from ambient temperature to 1600℃
11
作者 Qingjin Zhang Liangliang Fu +1 位作者 Guangwen Xu Dingrong Bai 《Particuology》 SCIE EI CAS CSCD 2024年第10期111-124,共14页
Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limite... Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limited, especially at temperatures exceeding 1000 ℃, making it challenging to develop high-temperature fluidized bed applications. This paper presents an experimental investigation on the turbulent fluidization onset velocity (U_(c)), measured in a 30 mm diameter bed using corundum particles with average diameters from 0.68 mm to 1.58 mm in temperatures from ambient to 1600 ℃. Experimental results reveal that U_(c) increases with temperature up to 600 ℃, stabilizes within the 600–1200 ℃ range, and then decreases above 1200 ℃, demonstrating the varying relative significance of hydrodynamic and interparticle forces at different temperatures. To help design and operate high-temperature applications of turbulent fluidization, we developed U_(c) correlations based on experimental data from both literature sources and this study, covering temperatures of up to 1600 ℃ and particles of Groups A to D. 展开更多
关键词 High-temperature fluidized beds Turbulent fluidization Transition velocity Pressure fluctuations Hydrodynamic forces Interparticle FORCES
原文传递
Fluidization of binary mixtures of sisal residue and sand:A new model for deriving the final fluidization velocity 被引量:1
12
作者 David Vasconcelos Gabriele Batalha +1 位作者 Luis Gabriel Pereira Carlos Augusto Pires 《Particuology》 SCIE EI CAS CSCD 2018年第5期10-22,共13页
The influence of different factors on the fiuidization of a binary mixture of sisal residue and sand was investigated.The particle sizes of the sand and sisal residue were varied from 0.2to 0.8mm and the biomass mass ... The influence of different factors on the fiuidization of a binary mixture of sisal residue and sand was investigated.The particle sizes of the sand and sisal residue were varied from 0.2to 0.8mm and the biomass mass fractions from 2% to 9%.Some segregation was noted,and a significant relationship was found among the final fluidization velocity (Uff),the biomass and sand sizes,and the biomass mass fraction.A novel model was developed for predicting Uff,leading to an average discrepancy of 12.69% between the measured and predicted Uff compared with the best match of 15.32% when using a model from a previous paper.The new model was applied to data from studies using other biomass and a broad range of particle characteristics.The average divergences from measured values when using the new model were 7.9% for corn cob and walnut shell,and 20.5% for sweet sorghum bagasse,tobacco residue, and soy hulls.These were superior to the values derived using other models.Our results confirm the accuracy of the model developed in this work and show that it represents a viable alternative way to calculate Uff for a binary mixture of sand and biomass. 展开更多
关键词 fluidization Binary mixture SISAL RESIDUE FINAL fluidization velocity model
原文传递
Predicting minimum fluidization velocities of multi-component solid mixtures 被引量:3
13
作者 Mohammad Asif 《Particuology》 SCIE EI CAS CSCD 2013年第3期309-316,共8页
Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for ... Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fiuidization velocity of density-different mixtures, as the difference in the expres- sions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here. 展开更多
关键词 minimum fluidization velocity Multi-component solid mixtures Flow regime Bed void fraction Volume-change of mixing
原文传递
Onset velocity of circulating fluidization and particle residence time distribution:A CFD-DEM study 被引量:9
14
作者 Qiqi Han Ning Yang +1 位作者 Jiahua Zhu Mingyan Liu 《Particuology》 SCIE EI CAS CSCD 2015年第4期187-195,共9页
Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid ve... Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD-DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is infuenced by the density and size of particles and weakly affected by riser height and diameter, A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD. 展开更多
关键词 Discrete element method (DEM) Computational fluid dynamics (CFD) Liquid-solid circulating fluidized bed Particle residence time distribution Onset velocity
原文传递
Fluidization of nano and sub-micron powders using mechanical vibration 被引量:7
15
作者 Souresh Kaliyaperumal Shahzad Barghi +2 位作者 Lauren Briens Sohrab Rohani Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2011年第3期279-287,共9页
The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated a... The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated air was used as the fluidizing gas whereas SiO2. Al2O3, TiO2, ZrSi, BaSO4 were solid particles. Mechanical vibration amplitudes were 0.1, 0.25, 0.35, 0.45mm, while the frequencies were 5, 20, 30, 40 Hz to investigate the effects of frequency and amplitude of mechanical vibration on minimum fluidization velocity, bed pressure drop, bed expansion, and the agglomerate size and size distribution, A novel technique was employed to determine the apparent minimum fluidization velocity from pressure drop signals. Richardson-Zaki equation was employed as nano-particles showed fluid like behavior when fluidized. The average size of agglomerates formed on top of the bed was smaller than those at the bottom, Size distribution of agglomerates on top was also more uniform compared to those near the distributor. Larger agglomerates at the bottom of the bed formed a small fraction of the bed particles. Average size of submicron agglomerates decreased with increasing the frequency of vibration, however nano particles were less sensitive to change in vibration frequency. Mechanical vibration enhanced the quality of fluidization by reducing channeling and rat-holing phenomena caused by interparticle cohesive forces. 展开更多
关键词 fluidization Nanoparticles Submicron particle Vibro-fluidized bed minimum fluidization velocity Agglomeration
原文传递
Effect of volume-contraction on incipient fluidization of binary-solid mixtures 被引量:2
16
作者 Mohammad Asif 《Particuology》 SCIE EI CAS CSCD 2011年第2期101-106,共6页
Towards the development of a predictive model for computing the minimum fluidization velocity, the volume-contraction phenomenon arising from the mixing of unequal solid species is accounted for in the prediction of t... Towards the development of a predictive model for computing the minimum fluidization velocity, the volume-contraction phenomenon arising from the mixing of unequal solid species is accounted for in the prediction of the bed void fraction of binary-solid mixtures at the incipient fluidization conditions. Com- parison with experimental data obtained from the literature clearly shows that significantly improved predictions are obtained except for cases where the stratification pattern whether arising from the slow defluidization or the difference in the densities of the two species affects the mixing of the constituent species. 展开更多
关键词 Binary solid mixture Bed void fraction Volume-contraction minimum fluidization velocity
原文传递
A state-of-the-art review on transition between the fast fluidization and pneumatic transport of Geldart group B particles 被引量:2
17
作者 Boyu Deng Yi Zhang +6 位作者 Man Zhang Yi Ding Tuo Zhou Xinhua Yang Zhong Huang Hairui Yang Guangxi Yue 《Particuology》 SCIE EI CAS CSCD 2023年第2期78-94,共17页
The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the... The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport.To this end,this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles,including the flow characteristics of the fast fluidization,the transition condition between the fast fluidization and pneumatic transport,the determination methods of the transport velocity utr and saturation carrying capacity G_(s)* and the influencing factors on these two parameters.Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler,and result in plenty of prediction correlations for utr and G_(s)*.Nonetheless,owing to insufficient data available on Geldart group B particles,especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses,the existing correlations are not well suited for the prediction of u_(tr) and G_(s)* of Geldart group B particles.Thus,further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles. 展开更多
关键词 Fast fluidization transition Transport velocity Saturation carrying capacity Geldart group B particles Circulating fluidized bed
原文传递
Dynamic characteristics of bubbling fluidization through recurrence rate analysis of pressure fluctuations 被引量:5
18
作者 Hossein Sedighikamal Reza Zarghami 《Particuology》 SCIE EI CAS CSCD 2013年第3期282-287,共6页
Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simp... Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime. 展开更多
关键词 Pressure fluctuations fluidization Recurrence rate Peak dominant frequency Transition velocity Power spectral density
原文传递
Simulation of the effect of hydrate adhesion properties on flow safety in solid fluidization exploitation
19
作者 Jun'ao Wang Yan Li +3 位作者 Jiafei Zhao Bohui Shi Jing Gong Qingping Li 《Petroleum》 EI CSCD 2023年第3期403-411,共9页
During the solid fluidization exploitation of marine natural gas hydrates,the hydrate particles and cuttings produced via excavation and crushing are transported by the drilling mud.The potential flow safety issues ar... During the solid fluidization exploitation of marine natural gas hydrates,the hydrate particles and cuttings produced via excavation and crushing are transported by the drilling mud.The potential flow safety issues arising during the transport process,such as the blockage of pipelines and equipment,have attracted considerable attention.This study aims to investigate the impact of hydrate adhesion features,including agglomeration,cohesion,and deposition,on the flow transport processes in solid fluidization exploitation and to provide a reference for the design and application of multiphase hydrate slurry transport in solid fluidization exploitation.We established a numerical simulation model that considers the hydrate adhesion properties using the coupled computational fluid dynamics and discrete element method(CFD-DEM)for the multiphase mixed transport in solid fluidization exploitation.An appropriate model to simulate the adhesion force of the hydrate particles and the corresponding parameter values were obtained.The conclusions obtained are as follows.Under the same operating conditions,a stationary bed is more likely to form in the transport process due to the hydrate adhesion forces;adhesion forces can increase the critical deposition velocity of the mixture of hydrate particles and cuttings.Hydrate adhesion lowers the height of the solid-phase moving bed,while the agglomeration and cohesion of particles can intensify the aggregation and deposition of hydrate debris and cuttings at the bottom of the pipe.These particles tend to form a deposit bed rather than a moving bed,which reduces the effective flow area of the pipeline and increases the risk of blockage. 展开更多
关键词 Solid fluidization exploitation Critical flow velocity Height of the moving bed Adhesion properties CFD-DEM
原文传递
Investigation of drying characteristics of low rank coal of bubbling fluidization through experiment using lab scale 被引量:2
20
作者 DoMan JEON TaeJin KANG +2 位作者 HyungTaek KIM SiHyun LEE SangDo KIM 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第7期1680-1683,共4页
Lignite is a low rank coal which is evenly distributed throughout the world and accounts for 45% of the total coal reserves. As it has a higher moisture content, its moisture content must be reduced in order to utiliz... Lignite is a low rank coal which is evenly distributed throughout the world and accounts for 45% of the total coal reserves. As it has a higher moisture content, its moisture content must be reduced in order to utilize it in power plant. In the present work, experiments on lignite has been done using a lab scale fluidized-bed reactor. Drying lignite through fluidized-bed reactor has a higher drying rate because there is good contact between particles and gas in the fluidized-bed reactor. Fluidized-bed drying can use air of 1.5 times of the minimum fluidizing velocity performance at bubbling fluidized-bed. Experiments have been performed on coal particle sizes of 0.3-1 mm, 1-1.18 mm and 1.18-2.8 mm, with operating temperatures being 100℃, 125℃ and 150℃, respectively. It is found that fluidization has a higher drying rate due to the heat transfer rate through air velocity. Hence, moisture content in lignite can be dried to a desired value with a time interval of 10 rain. The experiment through fluidized-bed reactor is expected to be useful for saving money and time. 展开更多
关键词 low rank coal moisture content minimum fluidizing velocity bubbling fluidized-bed
原文传递
上一页 1 2 21 下一页 到第
使用帮助 返回顶部