The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups w...The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis(BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis(HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios(CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.展开更多
Excitation-emission matrix fluorescence spectroscopy (EEM) has been widely used to elucidate the origin and structure of humic substances in natural environments. Due to its high sensitivity, good selectivity and non-...Excitation-emission matrix fluorescence spectroscopy (EEM) has been widely used to elucidate the origin and structure of humic substances in natural environments. Due to its high sensitivity, good selectivity and non-destructive advantage, the EEM was applied to characterizing a commercial Fluka humic acid (FHA). The results showed that the EEMs of FHA has several Ex/Em peaks. Ionic strength (0- 0.05 mol/L KClO 4) exerted little effect on the fluorescence properties of FHA, while the concentrations (5-100 mg/L) of FHA and pH (2-12) had significant effects. A red shift in the longer wavelength peak region was observed when the concentrations or pH values increased. The fluorescence intensity increased with increasing pH, but slightly decreased in the case of pH= 5.0. The protonation constants (lgK’ HL) of peak B were calculated to be 3.57 and 3.13, indicating that peak B was due to carboxyl groups. The r (A/B) values range from 0.61 to 2.59. A strong linear relationship between r (A/B) and pH was also observed. This indicates that the fluorescence peaks A and B posses similar inherent fluorescence characteristics.展开更多
AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: ...AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: Normal and adenomatous coionic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectrometer system were used for fluorescence measurement. Fluorescence excitation wavelengths varying from 260 to 540 nm were used to induce the autofluorescence spectra, and the corresponding emission spectra were recorded from a range starting 20 nm above the excitation wavelength and extending to 800 nm. Emission spectra were assembled into a three-dimensional fluorescence spectroscopy and an excitation-emission matrix (EEM) to exploit endogenous fluorophores and diagnostic information. Then emission spectra of normal and adenomatous coionic tissues at certain excitation wavelengths were compared to determine the optimal excitation wavelengths for diagnosis of coionic cancer. RESULTS: When compared to normal tissues, low NAD (P)H and FAD, but high amino acids and endogenous phorphyrins of protoporphyrin IX characterized the high-grade malignant coionic tissues. The optimal excitation wavelengths for diagnosis of coionic cancer were about 340, 380, 460, and 540 nm. CONCLUSION: Significant differences in autofluorescence peaks and its intensities can be observed in normal and adenomatous coionic tissues. Autofluorescence EEMs are able to identify coionic tissues.展开更多
To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Wa...To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Watch regional background station in North China.The chemical and optical characteristics of PM_(2.5)were analyzed,including organic carbon,elemental carbon,water-soluble organic carbon,water-soluble inorganic ions,and fluorescent components of watersoluble organic matter.The source factors of major aerosol components are apportioned,and the sources of the fluorescent chromophores are further analyzed.The major chemical components of PM_(2.5)at SDZ were NO_(3)^(-),organic matter,SO_(4)^(2-),and NH_(4)^(+).Annually,water-soluble organic carbon contributed 48%±15%to the total organic carbon.Secondary formation(52%)and fossil fuel combustion(63%)are the largest sources of water-soluble organic matter and water-insoluble organic matter,respectively.In addition,three humic-like and one protein-like matter were identified via parallel factor analysis for excitation–emission matrices.The fluorescence intensities of the components were highest in winter and lowest in summer,indicating the main impact of burning sources.This study contributes to understanding the chemical and optical characteristics of ambient aerosols in the background atmosphere.展开更多
A rapid,green and highly sensitive excitation-emission matrix(EEM) fluorescence method was proposed for analysis of irinotecan(CPT-11) in biological fluids including human plasma and urine samples of uncalibrated ...A rapid,green and highly sensitive excitation-emission matrix(EEM) fluorescence method was proposed for analysis of irinotecan(CPT-11) in biological fluids including human plasma and urine samples of uncalibrated interferences with the aid of second-order advantage.Due to the serious spectral overlapping from biological matrices,the parallel factor analysis(PARAFAC) and the alternating normalization-weighted error(ANWE) have been recommended to perform directly calibration and overcome the problem which makes the traditional fluorospectrophotometer in trouble.Satisfactory results can be achieved.Furthermore, performance of the proposed method was evaluated based on figures of merit and some statistical parameters.The accuracy of both algorithms was validated by the elliptical joint confidence region(EJCR) test.The precision and repeatability were also investigated by the relative standard deviations(RSDs) of intra-day and inter-day.展开更多
The southern Changjiang River Estuary has attracted considerable attention from marine scientists because it is a highly biologically active area and is biogeochemically significant. Moreover, land-ocean interactions ...The southern Changjiang River Estuary has attracted considerable attention from marine scientists because it is a highly biologically active area and is biogeochemically significant. Moreover, land-ocean interactions strongly impact the estuary, and harmful algal blooms (HABs) frequently occur in the area. In October 2010 and May 2011, water samples of chromophoric dissolved organic matter (CDOM) were collected from the southern Changjiang River Estuary. Parallel factor analysis (PARAFAC) was used to assess the samples' CDOM composition using excitation-emission matrix (EEM) spectroscopy. Four components were identified: three were humic-like (C1, C2 and C3) and one was protein-like (C4). Analysis based on spatial and seasonal distributions, as well as relationships with salinity, Chl a and apparent oxygen utilization (AOU), revealed that terrestrial inputs had the most significant effect on the three humic-like Components C1, C2 and C3 in autumn. In spring, microbial processes and phytoplankton blooms were also important factors that impacted the three components. The protein-like Component C4 had autochthonous and allochthonous origins and likely represented a biologically labile component. CDOM in the southern Changjiang River Estuary was mostly affected by terrestrial inputs. Microbial processes and phytoplankton blooms were also important sources of CDOM, especially in spring. The fluorescence intensities of the four components were significantly higher in spring than in autumn. On average, C1, C2, C3, C4 and the total fluorescence intensity (TFI) in the surface, middle and bottom layers increased by 123%-242%, 105%-195%, 167%-665%, 483%-567% and 184%-245% in spring than in autumn, respectively. This finding corresponded with a Chl a concentration that was 16-20 times higher in spring than in autumn and an AOU that was two to four times lower in spring than in autumn. The humification index (HIX) was lower in spring that in autumn, and the fluorescence index (FI) was higher in spring than in autumn. This result indicated that the CDOM was labile and the biological activity was intense in spring.展开更多
Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrurn donghaiense at the exponential growth, stationary and decline stages into 〈0.45 μm filtrate, 100 kDa-0.45 μm...Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrurn donghaiense at the exponential growth, stationary and decline stages into 〈0.45 μm filtrate, 100 kDa-0.45 μm, 1%100 kDa and 1-10 kDa retentate and 〈1 kDa ultrafiltrate fractions. The fluorescence properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.展开更多
Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of sa...Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.展开更多
This paper presents the possibilities offered by fluorescence spectroscopy for the identification of vegetable oils such as soybean, sunflower, flax, walnut, corn, almond, sesame, olive and pumpkin oils. The probes un...This paper presents the possibilities offered by fluorescence spectroscopy for the identification of vegetable oils such as soybean, sunflower, flax, walnut, corn, almond, sesame, olive and pumpkin oils. The probes under study have been excited with two types of sources: a laser diode (LD) and light-emitting diodes (LEDs) emitting in the UV and in the visible range. Total luminescence spectra were recorded by measuring the emission spectra in the range 350-720 nm at excitation wavelengths from 375 to 450 nm. The excitation-emission matrices have been obtained and two basic fluorescence regions in the visible have been outlined. On this basis the fluorescence spectra of the oils have been subdivided into three categories depending on the prevalence of the fluorescence maxima. The samples show differences in their fluorescence spectra. The latter fact shows that fluorescence spectroscopy can be used for the quick identification of edible oils. The fatty acid, the tocopherol, the beta-carotene and chlorophyll contents in the analyzed oils have been studied. It is shown that some of the types of oils differ significantly from each other by the first derivatives of their fluorescence spectra. There also exist color differences between the groups of vegetable oils under study.展开更多
The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the s...The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.展开更多
A novel approach is proposed for direct quantitative analysis of thiabendazole in the orange extract by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on the alternat...A novel approach is proposed for direct quantitative analysis of thiabendazole in the orange extract by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on the alternating trilinear decomposition(ATLD) and the alternating normalization-weighted error(ANWE) algorithms,respectively. The average recoveries of thiabendazole in the orange extract by using ATLD and ANWE with an estimated component number of two were 99.7 ± 3.3% and 103.5 ± 4.1%,respectively. Furthermore,the accuracy of the two algorithms was also evaluated through elliptical joint confidence region(EJCR) tests as well as figures of merit,such as sensitivity(SEN),selectivity(SEL) and limit of detection(LOD). The experimental results demonstrate that both algorithms have been satisfactorily applied to the determination of thiabendazole in orange extract,and the perform-ance of ANWE is slightly better than that of ATLD.展开更多
The thorough investigation of nanoplastics(NPs)in aqueous environments requires efficient and expeditious quantitative analytical methods that are sensitive to environmentally relevant NP concentrations and convenient...The thorough investigation of nanoplastics(NPs)in aqueous environments requires efficient and expeditious quantitative analytical methods that are sensitive to environmentally relevant NP concentrations and convenient to employ.Optical analysis-based quantitative methods have been acknowledged as effective and rapid approaches for quantifying NP concentrations in laboratory-scale studies.Herein,we compared three commonly used optical response indicators,namely fluorescence intensity(FI),ultraviolet absorbance,and turbidity,to assess their performance in quantifying NPs.Furthermore,orthogonal experiments were conducted to evaluate the influence of various water quality parameters on the preferred indicator-based quantification method.The results revealed that FI exhibits the highest correlation coefficient(>0.99)with NP concentration.Notably,the limit of quantification(LOQ)for various types of NPs is exceptionally low,ranging from 0.0089 to 0.0584 mg/L in ultrapure water,well below environmentally relevant concentrations.Despite variations in water quality parameters such as pH,salinity,suspended solids(SS),and humic acid,a robust relationship between detectable FI and NP concentration was identified.However,an increased matrix,especially SS in water samples,results in an enhanced LOQ for NPs.Nevertheless,the quantitative method remains applicable in real water bodies,especially in drinking water,with NP LOQ as low as 0.0157–0.0711 mg/L.This exceeds the previously reported detectable concentration for 100 nm NPs at 40µg/mL using surface-enhanced Raman spectroscopy.This study confirms the potential of FI as a reliable indicator for the rapid quantification of NPs in aqueous environments,offering substantial advantages in terms of both convenience and cost-effectiveness.展开更多
The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to invest...The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41376106,41176063)the Shandong Provincial Natural Science Foundation of China(No.ZR2013DM017)
文摘The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis(BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis(HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios(CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.
文摘Excitation-emission matrix fluorescence spectroscopy (EEM) has been widely used to elucidate the origin and structure of humic substances in natural environments. Due to its high sensitivity, good selectivity and non-destructive advantage, the EEM was applied to characterizing a commercial Fluka humic acid (FHA). The results showed that the EEMs of FHA has several Ex/Em peaks. Ionic strength (0- 0.05 mol/L KClO 4) exerted little effect on the fluorescence properties of FHA, while the concentrations (5-100 mg/L) of FHA and pH (2-12) had significant effects. A red shift in the longer wavelength peak region was observed when the concentrations or pH values increased. The fluorescence intensity increased with increasing pH, but slightly decreased in the case of pH= 5.0. The protonation constants (lgK’ HL) of peak B were calculated to be 3.57 and 3.13, indicating that peak B was due to carboxyl groups. The r (A/B) values range from 0.61 to 2.59. A strong linear relationship between r (A/B) and pH was also observed. This indicates that the fluorescence peaks A and B posses similar inherent fluorescence characteristics.
基金Supported by the Natural Science Foundation of Fujian Province, No. A0310018 and No. 2002F008the Scientific Research Program of Fujian Province, No. JA03041
文摘AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: Normal and adenomatous coionic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectrometer system were used for fluorescence measurement. Fluorescence excitation wavelengths varying from 260 to 540 nm were used to induce the autofluorescence spectra, and the corresponding emission spectra were recorded from a range starting 20 nm above the excitation wavelength and extending to 800 nm. Emission spectra were assembled into a three-dimensional fluorescence spectroscopy and an excitation-emission matrix (EEM) to exploit endogenous fluorophores and diagnostic information. Then emission spectra of normal and adenomatous coionic tissues at certain excitation wavelengths were compared to determine the optimal excitation wavelengths for diagnosis of coionic cancer. RESULTS: When compared to normal tissues, low NAD (P)H and FAD, but high amino acids and endogenous phorphyrins of protoporphyrin IX characterized the high-grade malignant coionic tissues. The optimal excitation wavelengths for diagnosis of coionic cancer were about 340, 380, 460, and 540 nm. CONCLUSION: Significant differences in autofluorescence peaks and its intensities can be observed in normal and adenomatous coionic tissues. Autofluorescence EEMs are able to identify coionic tissues.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130513 and 41625014)the National Key Research and Development Program of China(Grant No.2019YFA0606801)。
文摘To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Watch regional background station in North China.The chemical and optical characteristics of PM_(2.5)were analyzed,including organic carbon,elemental carbon,water-soluble organic carbon,water-soluble inorganic ions,and fluorescent components of watersoluble organic matter.The source factors of major aerosol components are apportioned,and the sources of the fluorescent chromophores are further analyzed.The major chemical components of PM_(2.5)at SDZ were NO_(3)^(-),organic matter,SO_(4)^(2-),and NH_(4)^(+).Annually,water-soluble organic carbon contributed 48%±15%to the total organic carbon.Secondary formation(52%)and fossil fuel combustion(63%)are the largest sources of water-soluble organic matter and water-insoluble organic matter,respectively.In addition,three humic-like and one protein-like matter were identified via parallel factor analysis for excitation–emission matrices.The fluorescence intensities of the components were highest in winter and lowest in summer,indicating the main impact of burning sources.This study contributes to understanding the chemical and optical characteristics of ambient aerosols in the background atmosphere.
基金supported by The National Natural Science Foundation of China(No.20775025)The National Basic Research Program(No.2007CB216404) as well as PCSIRT.
文摘A rapid,green and highly sensitive excitation-emission matrix(EEM) fluorescence method was proposed for analysis of irinotecan(CPT-11) in biological fluids including human plasma and urine samples of uncalibrated interferences with the aid of second-order advantage.Due to the serious spectral overlapping from biological matrices,the parallel factor analysis(PARAFAC) and the alternating normalization-weighted error(ANWE) have been recommended to perform directly calibration and overcome the problem which makes the traditional fluorospectrophotometer in trouble.Satisfactory results can be achieved.Furthermore, performance of the proposed method was evaluated based on figures of merit and some statistical parameters.The accuracy of both algorithms was validated by the elliptical joint confidence region(EJCR) test.The precision and repeatability were also investigated by the relative standard deviations(RSDs) of intra-day and inter-day.
基金The National Natural Science Foundation of China under contract No.41376106the Major Science and Technology Program for Water Pollution Control and Treatment under contract No.2012ZX07501
文摘The southern Changjiang River Estuary has attracted considerable attention from marine scientists because it is a highly biologically active area and is biogeochemically significant. Moreover, land-ocean interactions strongly impact the estuary, and harmful algal blooms (HABs) frequently occur in the area. In October 2010 and May 2011, water samples of chromophoric dissolved organic matter (CDOM) were collected from the southern Changjiang River Estuary. Parallel factor analysis (PARAFAC) was used to assess the samples' CDOM composition using excitation-emission matrix (EEM) spectroscopy. Four components were identified: three were humic-like (C1, C2 and C3) and one was protein-like (C4). Analysis based on spatial and seasonal distributions, as well as relationships with salinity, Chl a and apparent oxygen utilization (AOU), revealed that terrestrial inputs had the most significant effect on the three humic-like Components C1, C2 and C3 in autumn. In spring, microbial processes and phytoplankton blooms were also important factors that impacted the three components. The protein-like Component C4 had autochthonous and allochthonous origins and likely represented a biologically labile component. CDOM in the southern Changjiang River Estuary was mostly affected by terrestrial inputs. Microbial processes and phytoplankton blooms were also important sources of CDOM, especially in spring. The fluorescence intensities of the four components were significantly higher in spring than in autumn. On average, C1, C2, C3, C4 and the total fluorescence intensity (TFI) in the surface, middle and bottom layers increased by 123%-242%, 105%-195%, 167%-665%, 483%-567% and 184%-245% in spring than in autumn, respectively. This finding corresponded with a Chl a concentration that was 16-20 times higher in spring than in autumn and an AOU that was two to four times lower in spring than in autumn. The humification index (HIX) was lower in spring that in autumn, and the fluorescence index (FI) was higher in spring than in autumn. This result indicated that the CDOM was labile and the biological activity was intense in spring.
基金Supported by the High Technology Research and Development Program of China (863 Program) (Nos 2006AA09Z180 and 2004AA639790)the National Natural Science Foundation of China (No 40106013)the National Basic Research Program of China (973 Program) (No 2001CB409703)
文摘Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrurn donghaiense at the exponential growth, stationary and decline stages into 〈0.45 μm filtrate, 100 kDa-0.45 μm, 1%100 kDa and 1-10 kDa retentate and 〈1 kDa ultrafiltrate fractions. The fluorescence properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.
基金supported by the National High-tech Research Project ("863" Project) of China under contract Nos 2003AA635180 and 2006AA09Z167the Public Welfare Project of Marine Science Research under contract No 200705011the open project of Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms,SOA, China under contract No200811
文摘Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.
文摘This paper presents the possibilities offered by fluorescence spectroscopy for the identification of vegetable oils such as soybean, sunflower, flax, walnut, corn, almond, sesame, olive and pumpkin oils. The probes under study have been excited with two types of sources: a laser diode (LD) and light-emitting diodes (LEDs) emitting in the UV and in the visible range. Total luminescence spectra were recorded by measuring the emission spectra in the range 350-720 nm at excitation wavelengths from 375 to 450 nm. The excitation-emission matrices have been obtained and two basic fluorescence regions in the visible have been outlined. On this basis the fluorescence spectra of the oils have been subdivided into three categories depending on the prevalence of the fluorescence maxima. The samples show differences in their fluorescence spectra. The latter fact shows that fluorescence spectroscopy can be used for the quick identification of edible oils. The fatty acid, the tocopherol, the beta-carotene and chlorophyll contents in the analyzed oils have been studied. It is shown that some of the types of oils differ significantly from each other by the first derivatives of their fluorescence spectra. There also exist color differences between the groups of vegetable oils under study.
基金the National Natural Science Foundation of China(No.51778599)the Beijing Natural Science Foundation(No.LI82044)+1 种基金the CAS Strategic Priority Research Programmer(A)(No.XDA20050103)the Youth Innovation Promotion Association CAS(No.110500EA62)。
文摘The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20775025 and 20435010)973 Advanced Research Project (Grant No. 2007CB- 216404)
文摘A novel approach is proposed for direct quantitative analysis of thiabendazole in the orange extract by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on the alternating trilinear decomposition(ATLD) and the alternating normalization-weighted error(ANWE) algorithms,respectively. The average recoveries of thiabendazole in the orange extract by using ATLD and ANWE with an estimated component number of two were 99.7 ± 3.3% and 103.5 ± 4.1%,respectively. Furthermore,the accuracy of the two algorithms was also evaluated through elliptical joint confidence region(EJCR) tests as well as figures of merit,such as sensitivity(SEN),selectivity(SEL) and limit of detection(LOD). The experimental results demonstrate that both algorithms have been satisfactorily applied to the determination of thiabendazole in orange extract,and the perform-ance of ANWE is slightly better than that of ATLD.
基金partly supported by the National Natural Science Foundation of China(Nos.22376066 and 22076045)the Science and Technology Commission of Shanghai Municipality’s zhongYangfan Special Project(China)(No.23YF1408400)+1 种基金the Postdoctoral Innovation Talents Support Program(China)(No.BX20230123)the Fundamental Research Funds for the Central Universities(China).
文摘The thorough investigation of nanoplastics(NPs)in aqueous environments requires efficient and expeditious quantitative analytical methods that are sensitive to environmentally relevant NP concentrations and convenient to employ.Optical analysis-based quantitative methods have been acknowledged as effective and rapid approaches for quantifying NP concentrations in laboratory-scale studies.Herein,we compared three commonly used optical response indicators,namely fluorescence intensity(FI),ultraviolet absorbance,and turbidity,to assess their performance in quantifying NPs.Furthermore,orthogonal experiments were conducted to evaluate the influence of various water quality parameters on the preferred indicator-based quantification method.The results revealed that FI exhibits the highest correlation coefficient(>0.99)with NP concentration.Notably,the limit of quantification(LOQ)for various types of NPs is exceptionally low,ranging from 0.0089 to 0.0584 mg/L in ultrapure water,well below environmentally relevant concentrations.Despite variations in water quality parameters such as pH,salinity,suspended solids(SS),and humic acid,a robust relationship between detectable FI and NP concentration was identified.However,an increased matrix,especially SS in water samples,results in an enhanced LOQ for NPs.Nevertheless,the quantitative method remains applicable in real water bodies,especially in drinking water,with NP LOQ as low as 0.0157–0.0711 mg/L.This exceeds the previously reported detectable concentration for 100 nm NPs at 40µg/mL using surface-enhanced Raman spectroscopy.This study confirms the potential of FI as a reliable indicator for the rapid quantification of NPs in aqueous environments,offering substantial advantages in terms of both convenience and cost-effectiveness.
基金funded by the National Natural Science Foundation of China(Grant nos.42276255 and 41976227)project“Impact and Response of Antarctic Seas to Climate Change,IRASCC 2020-2022”(Grant nos.01-01-02A and 02-02-05).
文摘The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.