A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response t...A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response to Amrinon in the range of 7 98×10 -7 —1 52×10 -4 mol/L at pH 3 28—4 04. The response mainly originates from the Primary Inner Filter Effect, which causes a decrease in the fluorescence intensity of the sensor membrane. The distinct advantages of the proposed sensor are of full reversibility, high sensitivity and selectivity as well as short response time(<1 min), indicating that the sensor can be used to monitor Amrinon in serum samples.展开更多
Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on line measurement for alga concentration using He Ne laser as the light source. ...Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on line measurement for alga concentration using He Ne laser as the light source. It can also effectively detect weak signals. The system with a passive sensor head has such advantages as simple structure, high sensitivity and high accuracy. It has been demonstrated that this system can be used to monitor water quality and can also be used to survey some matter.展开更多
A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-...A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris(2,2′-bipyridyl) ruthenium(II) chloride complexes(Ru(II)(byp)3Cl2) were immobilized in cellulose acetate(CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L(S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.展开更多
With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious. The measurement of the e...With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious. The measurement of the engine temperature and strain becomes very important. The fluorescence fiber sensors are broadly used to measure temperature, concentration, and pH value, etc. The fluorescence sensing systems are based on different principles, namely fluorescence intensity, fluorescence intensity ratio, and fluorescence lifetime. The fluorescence lifetime is an effective parameter for sensing purpose, because it is independent of the intensity of the pumping source and does not need expensive narrow-band filters. An experiment system has been established, in which some samples were produced to measure the fluorescence lifetime and temperature characteristics and the relationship of the strain and temperature versus the fluorescence lifetime was achieved at the same time. The experiment result was fitted and analyzed. The test results show that the fluorescence lifetime decreases with the increasing of temperature. The change of fluorescence lifetime with the strain is inconspicuous comparing to that with the temperature.展开更多
文摘A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response to Amrinon in the range of 7 98×10 -7 —1 52×10 -4 mol/L at pH 3 28—4 04. The response mainly originates from the Primary Inner Filter Effect, which causes a decrease in the fluorescence intensity of the sensor membrane. The distinct advantages of the proposed sensor are of full reversibility, high sensitivity and selectivity as well as short response time(<1 min), indicating that the sensor can be used to monitor Amrinon in serum samples.
文摘Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on line measurement for alga concentration using He Ne laser as the light source. It can also effectively detect weak signals. The system with a passive sensor head has such advantages as simple structure, high sensitivity and high accuracy. It has been demonstrated that this system can be used to monitor water quality and can also be used to survey some matter.
基金Funded by the National Natural Science Foundation of China(No.61377092)
文摘A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris(2,2′-bipyridyl) ruthenium(II) chloride complexes(Ru(II)(byp)3Cl2) were immobilized in cellulose acetate(CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L(S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.
基金Supported by the Heilongjiang Provincial Natural Science Research Foundation (A0308).
文摘With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious. The measurement of the engine temperature and strain becomes very important. The fluorescence fiber sensors are broadly used to measure temperature, concentration, and pH value, etc. The fluorescence sensing systems are based on different principles, namely fluorescence intensity, fluorescence intensity ratio, and fluorescence lifetime. The fluorescence lifetime is an effective parameter for sensing purpose, because it is independent of the intensity of the pumping source and does not need expensive narrow-band filters. An experiment system has been established, in which some samples were produced to measure the fluorescence lifetime and temperature characteristics and the relationship of the strain and temperature versus the fluorescence lifetime was achieved at the same time. The experiment result was fitted and analyzed. The test results show that the fluorescence lifetime decreases with the increasing of temperature. The change of fluorescence lifetime with the strain is inconspicuous comparing to that with the temperature.