A benzoic acid rare earth(Tb) complex was synthesized and characterized.The excitation and emission spectra of the complex were investigated,and then pure organic complex was incorporated with inorganic matrices(SiO2)...A benzoic acid rare earth(Tb) complex was synthesized and characterized.The excitation and emission spectra of the complex were investigated,and then pure organic complex was incorporated with inorganic matrices(SiO2) through sol-gel method.The composition and structure of the hybrid complex was characterized through the IR spectra,TG,TEM and fluorescent spectrometer.Furthermore,the polypropylene(PP) fluorescent fiber with the organic-inorganic hybrid was prepared by melt spinning.The fluorescent and mechanical properties of the fiber were also tested.The results showed that after sol-gel coating the average particulate dimension of the hybrid rare earth complex was less than 100 nm and thermal stability was improved.Meanwhile,the fiber possessed excellent fluorescent and mechanical properties,which could be used as a candidate applied to excellent fluorescent anti-counterfeiting fiber.展开更多
Comprehensive Summary Many industries are plagued by economic losses and product failures caused by counterfeit goods.Therefore,advanced anti-counterfeiting techniques are continuously needed.In this study,we construc...Comprehensive Summary Many industries are plagued by economic losses and product failures caused by counterfeit goods.Therefore,advanced anti-counterfeiting techniques are continuously needed.In this study,we constructed a series of acid-base sensitive cyclic chalcone dyes A—F by modifying different electron-donating groups.Differences in acid sensitivity of different structures are well rationalised by NMR and theoretical calculations.Aniline is difficult to protonate than fatty amines,so there is a difference in fluorescence.Hiding and anti-counterfeiting of information is achieved by this phenomenon.Powder X and Y are the anti-counterfeit fluorescent powder containing montmorillonite and cyclic chalcone,which have orange fluorescence and the very similar appearance.However,under the influence of acid the Powder X containing triphenylamine modified cyclic chalcone shows red shifted fluorescence and Powder Y containing morpholino and diethylamino groups modified cyclic chalcone shows blue shifted fluorescence.Therefore,the anti-counterfeiting strategy based on cyclic chalcone is not only limited to UV-irradiated fluorescence development,but also has more colorization and pattern variations with the aid of acid developer.Data encryption and decryption of numbers,English alphabets and Chinese characters have been realized using A—F,which have great potential for practical applications.展开更多
The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced at...The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.展开更多
Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on line measurement for alga concentration using He Ne laser as the light source. ...Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on line measurement for alga concentration using He Ne laser as the light source. It can also effectively detect weak signals. The system with a passive sensor head has such advantages as simple structure, high sensitivity and high accuracy. It has been demonstrated that this system can be used to monitor water quality and can also be used to survey some matter.展开更多
The fluorescent principle used for measuring alga characteristic parameters and the optimum structure design of the instrument are discussed. The fluorescent spectrum of Chla/c and the time-resolved different spectrum...The fluorescent principle used for measuring alga characteristic parameters and the optimum structure design of the instrument are discussed. The fluorescent spectrum of Chla/c and the time-resolved different spectrum ΔA(λ,t) are given. The research provides an effective method for considering the density and the classification of algae, which will be helpful to monitor sea pollution.展开更多
Anti-counterfeiting labels with various fluorescent colors are of great importance in information encryption-decryption,but are still limited to static information display.Therefore,it is urgent to develop new materia...Anti-counterfeiting labels with various fluorescent colors are of great importance in information encryption-decryption,but are still limited to static information display.Therefore,it is urgent to develop new materials and encryption-decryption logic for improving the security level of secret information.In this study,an organohydrogel made up of poly(N,N-dimethylacrylamide)(pDMA)hydrogel network and polyoctadecyl methacrylate(pSMA)organogel network that copolymerized with two fluorophores,6-acrylamidopicolinic acid moieties(6APA,fluorescent ligand)and spiropyran units(SPMA,photochromic monomer),was prepared by a two-step interpenetrating method.As UV light of 365nm and 254nm can both cleave C_(spiro)-O bonds of SPMA,and the green fluorescence of 6APA-Tb^(3+) can only be excited by 254nm light,the organohydrogel displays yellow and red under the irradiation of 254nm and 365 nm,respectively.In addition to wavelength selectivity,these two fluorophores are thermal-responsive,leading to the fluorescence variation of the organohydrogel during heating process.As a result,secret information loaded on the organohydrogel can be decrypted by the irradiation of UV light,and the authenticity of the information can be further identified by thermal stimulation.Our fluorescent organohydrogel can act as an effective anti-counterfeiting label to improve the information security and protect the information from being cracked.展开更多
There is currently great interest in developing an environment-friendly,low-cost,and scalable approach for producing stimuli-responsive fluorescent hydrogels(FHs)with excellent mechanical property,rewritable fluoresce...There is currently great interest in developing an environment-friendly,low-cost,and scalable approach for producing stimuli-responsive fluorescent hydrogels(FHs)with excellent mechanical property,rewritable fluorescence,and dual anti-counterfeiting capabilities.Herein,by applying natural,environment-friendly,and sustainable curcumin as a responsive agent,tough pH-responsive FHs(pH-FHs)are fabricated via a facile preparation strategy.These materials have outstanding mechanical performances:ultimate stress of 180 kPa,an ultimate strain of~2500%,and good anti-fatigue performances against compression.These pH-FHs are able to sense ammonia and formaldehyde gas,resulting in both a color change and fluorescence for dual anti-counterfeiting functionality.This sensing information is stored individually by the pH-FHs and could be externally removed using formaldehyde gas to achieve a rewritable system.Our study provides valuable insights that are expected to facilitate the development of smart FHs for information encryption and anti-counterfeiting applications.展开更多
Dental caries diagnosis system has been made with a fiber lighting, camera module and band pass filter. By simply aligning a 405 nm LED (Light Emitting diode) chips directly connected polymer fibers, a compact lightin...Dental caries diagnosis system has been made with a fiber lighting, camera module and band pass filter. By simply aligning a 405 nm LED (Light Emitting diode) chips directly connected polymer fibers, a compact lighting for dental fluorescence imaging could be implemented. Special designed fiber holder with proper hole diameter was fabricated to directly connect polymer fibers with 1 mm fiber diameter and increased coupling efficiency between fibers and LEDs. Fibers connected to fiber holder were polished by polishing machine to reduce insertion loss of the fiber. Experimentally, an optical insertion loss of the fiber bundle of up to 0.8 dB was achieved. Further, LED array module was packaged with equally spaced LED chips with fiber holder on metal. Fiber lightening was fabricated with directly coupled between LED array module and fiber bundle by UV epoxy without focusing lens in order to lower the lightening temperature of intraoral camera in the human mouth. The measured temperature of fabricated fiber lightening was about 25 degree celcius. To achieve a fluorescence image and dental caries diagnosis, the proper optical filter, camera module, 405 nm fiber bundle lighting and software were investigated. The performance of the fluorescence intraoral camera with fiber lightening is confirmed by fluorescence image of human tooth.展开更多
A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response t...A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response to Amrinon in the range of 7 98×10 -7 —1 52×10 -4 mol/L at pH 3 28—4 04. The response mainly originates from the Primary Inner Filter Effect, which causes a decrease in the fluorescence intensity of the sensor membrane. The distinct advantages of the proposed sensor are of full reversibility, high sensitivity and selectivity as well as short response time(<1 min), indicating that the sensor can be used to monitor Amrinon in serum samples.展开更多
Anew opticalfiberfluorometricthermometerbased onthetemperature dependence ofthefluorescencelifetime of phosphoris described. The phase-locked detection (PLD) system is used to measure fluorescencelifetime. The charact...Anew opticalfiberfluorometricthermometerbased onthetemperature dependence ofthefluorescencelifetime of phosphoris described. The phase-locked detection (PLD) system is used to measure fluorescencelifetime. The characteristics ofthermometerare discussed and the experimentresults are given.展开更多
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An...Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.展开更多
Microduplications are normally invisible under microscopy and were not recognized before chromosomal microarray testing was available. Although it is difficult to confirm the orientation of duplicated segments by stan...Microduplications are normally invisible under microscopy and were not recognized before chromosomal microarray testing was available. Although it is difficult to confirm the orientation of duplicated segments by standard fluorescence in situ hybridization(FISH), our data indicates that fiber-FISH analysis has the potential to reveal the orientation of duplicated and triplicated segments of chromosomes. Recurrent microduplications reciprocal to microdeletions show tandem orientations of the duplicated segments, which is consistent with a non-allelic homologous recombination mechanism. Several random duplications showed tandem configurations and inverted duplications are rare. Further analysis is required to fully elucidate the basic mechanisms underlying such duplications/triplications.展开更多
Fluorescent nanothermometers for remote temperature measurement at the micro/nanoscale have stimulated growing efforts in developing efficient temperature-responsive materials and detection procedures.However,the effi...Fluorescent nanothermometers for remote temperature measurement at the micro/nanoscale have stimulated growing efforts in developing efficient temperature-responsive materials and detection procedures.However,the efficient collection and transmission of optical signals have been a tremendous challenge for practical applications of these nanothermometers.Herein,we design an all-fiberized thermometry based on a fiber-coupled microsphere cavity coated with thermo-sensitive NaYF_(4)∶20%Yb^(3+);2%Er^(3+)@NaYF_(4)nanocrystals(NCs),allowing for spatial temperature sensing with resolution down to the few-micrometer scale.In our design,the microsphere efficiently excites the NCs and collects their upconversion emissions,and the use of a fiber splitter coupled with the microsphere allows for lossless routing of excitation and emitted light.We demonstrate the use of this all-fiber temperature sensor in diverse environments,especially in strongly acidic and alkaline conditions.Leveraging the high flexibility of commercial silica fiber,this all-fiber temperature ensor was employed for stable fixed-point real-time temperature measurement and multipurpose temperature recording/mapping in opaque environments,microscale areas,various solutions,and complicated bent structures.Thus,the demonstrated design could have strong implications for the practical use of nanothermometers in various possible scenarios,especially monitoring temperatures in diverse physiological settings.展开更多
Monitoring of sweat pH plays important roles in physiological health,nutritional balance,psychological stress,and sports performance.However,the combination of functional MOFs with phosphorescent material to acquire t...Monitoring of sweat pH plays important roles in physiological health,nutritional balance,psychological stress,and sports performance.However,the combination of functional MOFs with phosphorescent material to acquire the real-time physiological information,as well as the application of dual mode anti-counterfeiting,has seldom been reported.Herein,we developed multifunctional gel films based on MOFs and phosphorescent dyes which responded to H+ions and the related mechanism was studied in detail.Upon exposure to H+,the composite gel film exhibited decreased fluorescent signal but enhanced room temperature phosphorescence(RTP),which could be utilized for sweat pH sensing through a dual-mode.Moreover,multifunctional gel films exhibited a potential application in information encryption and anti-counterfeiting by designing of stimulus responsive multiple patterns.This research provided a new avenue for portable and non-invasive sweat pH monitoring methods while also offering insights into stimulus-responsive multifunctional materials.展开更多
基金Project supported by the Chinese Ministry of Education (208005)Young Scientist Backbone of Heilongjiang Common Higher University (1154G03)
文摘A benzoic acid rare earth(Tb) complex was synthesized and characterized.The excitation and emission spectra of the complex were investigated,and then pure organic complex was incorporated with inorganic matrices(SiO2) through sol-gel method.The composition and structure of the hybrid complex was characterized through the IR spectra,TG,TEM and fluorescent spectrometer.Furthermore,the polypropylene(PP) fluorescent fiber with the organic-inorganic hybrid was prepared by melt spinning.The fluorescent and mechanical properties of the fiber were also tested.The results showed that after sol-gel coating the average particulate dimension of the hybrid rare earth complex was less than 100 nm and thermal stability was improved.Meanwhile,the fiber possessed excellent fluorescent and mechanical properties,which could be used as a candidate applied to excellent fluorescent anti-counterfeiting fiber.
基金supported by the National Natural Science Foundation of China(22377064 and 21702114)CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-12M-1-054)Youth Innovation Team Development Program of Shandong Higher Education Institutions(2022KJC004).
文摘Comprehensive Summary Many industries are plagued by economic losses and product failures caused by counterfeit goods.Therefore,advanced anti-counterfeiting techniques are continuously needed.In this study,we constructed a series of acid-base sensitive cyclic chalcone dyes A—F by modifying different electron-donating groups.Differences in acid sensitivity of different structures are well rationalised by NMR and theoretical calculations.Aniline is difficult to protonate than fatty amines,so there is a difference in fluorescence.Hiding and anti-counterfeiting of information is achieved by this phenomenon.Powder X and Y are the anti-counterfeit fluorescent powder containing montmorillonite and cyclic chalcone,which have orange fluorescence and the very similar appearance.However,under the influence of acid the Powder X containing triphenylamine modified cyclic chalcone shows red shifted fluorescence and Powder Y containing morpholino and diethylamino groups modified cyclic chalcone shows blue shifted fluorescence.Therefore,the anti-counterfeiting strategy based on cyclic chalcone is not only limited to UV-irradiated fluorescence development,but also has more colorization and pattern variations with the aid of acid developer.Data encryption and decryption of numbers,English alphabets and Chinese characters have been realized using A—F,which have great potential for practical applications.
基金supported by the Special Fund for Development of National Major Scientific Instruments of China(Grant No.2013YQ04081504)the Program for Innovative Research Team in University,China(Grant No.IRT 1203)
文摘The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.
文摘Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on line measurement for alga concentration using He Ne laser as the light source. It can also effectively detect weak signals. The system with a passive sensor head has such advantages as simple structure, high sensitivity and high accuracy. It has been demonstrated that this system can be used to monitor water quality and can also be used to survey some matter.
文摘The fluorescent principle used for measuring alga characteristic parameters and the optimum structure design of the instrument are discussed. The fluorescent spectrum of Chla/c and the time-resolved different spectrum ΔA(λ,t) are given. The research provides an effective method for considering the density and the classification of algae, which will be helpful to monitor sea pollution.
基金supported by the National Key R&D Program of China(No.2022YFB3204300)the National Natural Science Foundation of China(No.52103246)+1 种基金Zhejiang Provincial Natural Science Foundation,China(No.LQ22E030015)Natural Science Foundation of Ningbo,China(No.20221JCGY010301).
文摘Anti-counterfeiting labels with various fluorescent colors are of great importance in information encryption-decryption,but are still limited to static information display.Therefore,it is urgent to develop new materials and encryption-decryption logic for improving the security level of secret information.In this study,an organohydrogel made up of poly(N,N-dimethylacrylamide)(pDMA)hydrogel network and polyoctadecyl methacrylate(pSMA)organogel network that copolymerized with two fluorophores,6-acrylamidopicolinic acid moieties(6APA,fluorescent ligand)and spiropyran units(SPMA,photochromic monomer),was prepared by a two-step interpenetrating method.As UV light of 365nm and 254nm can both cleave C_(spiro)-O bonds of SPMA,and the green fluorescence of 6APA-Tb^(3+) can only be excited by 254nm light,the organohydrogel displays yellow and red under the irradiation of 254nm and 365 nm,respectively.In addition to wavelength selectivity,these two fluorophores are thermal-responsive,leading to the fluorescence variation of the organohydrogel during heating process.As a result,secret information loaded on the organohydrogel can be decrypted by the irradiation of UV light,and the authenticity of the information can be further identified by thermal stimulation.Our fluorescent organohydrogel can act as an effective anti-counterfeiting label to improve the information security and protect the information from being cracked.
基金the Guangzhou Municipality Bureau of Education (201831825) for sponsoring this research
文摘There is currently great interest in developing an environment-friendly,low-cost,and scalable approach for producing stimuli-responsive fluorescent hydrogels(FHs)with excellent mechanical property,rewritable fluorescence,and dual anti-counterfeiting capabilities.Herein,by applying natural,environment-friendly,and sustainable curcumin as a responsive agent,tough pH-responsive FHs(pH-FHs)are fabricated via a facile preparation strategy.These materials have outstanding mechanical performances:ultimate stress of 180 kPa,an ultimate strain of~2500%,and good anti-fatigue performances against compression.These pH-FHs are able to sense ammonia and formaldehyde gas,resulting in both a color change and fluorescence for dual anti-counterfeiting functionality.This sensing information is stored individually by the pH-FHs and could be externally removed using formaldehyde gas to achieve a rewritable system.Our study provides valuable insights that are expected to facilitate the development of smart FHs for information encryption and anti-counterfeiting applications.
文摘Dental caries diagnosis system has been made with a fiber lighting, camera module and band pass filter. By simply aligning a 405 nm LED (Light Emitting diode) chips directly connected polymer fibers, a compact lighting for dental fluorescence imaging could be implemented. Special designed fiber holder with proper hole diameter was fabricated to directly connect polymer fibers with 1 mm fiber diameter and increased coupling efficiency between fibers and LEDs. Fibers connected to fiber holder were polished by polishing machine to reduce insertion loss of the fiber. Experimentally, an optical insertion loss of the fiber bundle of up to 0.8 dB was achieved. Further, LED array module was packaged with equally spaced LED chips with fiber holder on metal. Fiber lightening was fabricated with directly coupled between LED array module and fiber bundle by UV epoxy without focusing lens in order to lower the lightening temperature of intraoral camera in the human mouth. The measured temperature of fabricated fiber lightening was about 25 degree celcius. To achieve a fluorescence image and dental caries diagnosis, the proper optical filter, camera module, 405 nm fiber bundle lighting and software were investigated. The performance of the fluorescence intraoral camera with fiber lightening is confirmed by fluorescence image of human tooth.
文摘A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response to Amrinon in the range of 7 98×10 -7 —1 52×10 -4 mol/L at pH 3 28—4 04. The response mainly originates from the Primary Inner Filter Effect, which causes a decrease in the fluorescence intensity of the sensor membrane. The distinct advantages of the proposed sensor are of full reversibility, high sensitivity and selectivity as well as short response time(<1 min), indicating that the sensor can be used to monitor Amrinon in serum samples.
文摘Anew opticalfiberfluorometricthermometerbased onthetemperature dependence ofthefluorescencelifetime of phosphoris described. The phase-locked detection (PLD) system is used to measure fluorescencelifetime. The characteristics ofthermometerare discussed and the experimentresults are given.
文摘Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.
文摘Microduplications are normally invisible under microscopy and were not recognized before chromosomal microarray testing was available. Although it is difficult to confirm the orientation of duplicated segments by standard fluorescence in situ hybridization(FISH), our data indicates that fiber-FISH analysis has the potential to reveal the orientation of duplicated and triplicated segments of chromosomes. Recurrent microduplications reciprocal to microdeletions show tandem orientations of the duplicated segments, which is consistent with a non-allelic homologous recombination mechanism. Several random duplications showed tandem configurations and inverted duplications are rare. Further analysis is required to fully elucidate the basic mechanisms underlying such duplications/triplications.
基金supported by the National Natural Science Foundation of China(Grant Nos.52202004,62122027,12204179,62205109,and 62075063)the Key R&D Program of Guangzhou(Grant No.202007020003)+4 种基金the fellowship of China Postdoctoral Science Foundation(Grant Nos.2021M691054 and 2022M711185)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515110475,2021A1515110911,2022A1515011289,and 2023A1515012666)the Guangzhou Basic and Applied Basic Research Foundation(Grant Nos.202201010428 and 202201010407)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(Grant No.2017BT01X137)the State Key Lab of Luminescent Materials and Devices,South China University of Technology.
文摘Fluorescent nanothermometers for remote temperature measurement at the micro/nanoscale have stimulated growing efforts in developing efficient temperature-responsive materials and detection procedures.However,the efficient collection and transmission of optical signals have been a tremendous challenge for practical applications of these nanothermometers.Herein,we design an all-fiberized thermometry based on a fiber-coupled microsphere cavity coated with thermo-sensitive NaYF_(4)∶20%Yb^(3+);2%Er^(3+)@NaYF_(4)nanocrystals(NCs),allowing for spatial temperature sensing with resolution down to the few-micrometer scale.In our design,the microsphere efficiently excites the NCs and collects their upconversion emissions,and the use of a fiber splitter coupled with the microsphere allows for lossless routing of excitation and emitted light.We demonstrate the use of this all-fiber temperature sensor in diverse environments,especially in strongly acidic and alkaline conditions.Leveraging the high flexibility of commercial silica fiber,this all-fiber temperature ensor was employed for stable fixed-point real-time temperature measurement and multipurpose temperature recording/mapping in opaque environments,microscale areas,various solutions,and complicated bent structures.Thus,the demonstrated design could have strong implications for the practical use of nanothermometers in various possible scenarios,especially monitoring temperatures in diverse physiological settings.
基金supported by the Basic Research Fund for the Central Universities(WK3450000006)the National Natural Science Foundation of China(52373122).
文摘Monitoring of sweat pH plays important roles in physiological health,nutritional balance,psychological stress,and sports performance.However,the combination of functional MOFs with phosphorescent material to acquire the real-time physiological information,as well as the application of dual mode anti-counterfeiting,has seldom been reported.Herein,we developed multifunctional gel films based on MOFs and phosphorescent dyes which responded to H+ions and the related mechanism was studied in detail.Upon exposure to H+,the composite gel film exhibited decreased fluorescent signal but enhanced room temperature phosphorescence(RTP),which could be utilized for sweat pH sensing through a dual-mode.Moreover,multifunctional gel films exhibited a potential application in information encryption and anti-counterfeiting by designing of stimulus responsive multiple patterns.This research provided a new avenue for portable and non-invasive sweat pH monitoring methods while also offering insights into stimulus-responsive multifunctional materials.