Fluorescent nanoparticles have good chemical stability and photostability,controllable optical properties and larger stokes shift.In light of their designability and functionability,the fluorescent nanoparticles are w...Fluorescent nanoparticles have good chemical stability and photostability,controllable optical properties and larger stokes shift.In light of their designability and functionability,the fluorescent nanoparticles are widely used as the fluorescent probes for diverse applications.To enhance the sensitivity and selectivity,the combination of the fluorescent nanoparticles with the molecularly imprinted polymer,i.e.molecularly imprinted fluorescent nanoparticles(MIFN),was an effective way.The sensor based on MIFN(the MIFN sensor)could be more compatible with the complex sample matrix,which was especially widely adopted in medical and biological analysis.In this mini-review,the construction method,detective mechanism and types of MIFN sensors are elaborated.The current applications of MIFN sensors in pharmaceutical analysis,including pesticides/herbicide,veterinary drugs/drugs residues and human related proteins,are highlighted based on the literature in the recent three years.Finally,the research prospect and development trend of the MIFN sensor are forecasted.展开更多
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce...In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.展开更多
Structurally simple salicylaldehyde-based fluoreseent sensors for amino acids have been obtained by one-step or two-step synthesis.These sensors show significant fluorescence enhancement in the presence of many amino ...Structurally simple salicylaldehyde-based fluoreseent sensors for amino acids have been obtained by one-step or two-step synthesis.These sensors show significant fluorescence enhancement in the presence of many amino acids at concentrations as low as 10~5 mol/L.The reversible reaction of the aldehydes with amino acids to form imines in aqueous solution is proposed to account for the observed fluorescence enhancement.展开更多
The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neur...The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte- neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neu- ronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here,we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.展开更多
Three novel rhodamine-based Hg^2+ fluorescent sensors were designed and synthesized. The sensors could work in semi-aqueous solutions with nearly neutral p H and showed high selectivity and sensitivity to Hg^2+ with...Three novel rhodamine-based Hg^2+ fluorescent sensors were designed and synthesized. The sensors could work in semi-aqueous solutions with nearly neutral p H and showed high selectivity and sensitivity to Hg^2+ with remarkable fluorescence enhancement. For these three sensors, the linear working range broadened(0–80, 0–100 and 0–140 μmol/L, respectively) and the sensitivity increased(7.7, 15.5 and 17.6 folds of the fluorescence enhancement and 512, 66.2 and 37.6 ppb of the detection limit) with the rising of the thiourea-unit numbers. Furthermore the sensors exhibited excellent interference immunity to multiple environmentally and biologically relevant metal ions. Pond and tap water assay showed good practicability of the sensors. The number of the bound Hg^(2+) equaling to that of the thiourea units and the irreversible recognition process implied a new interaction way between Hg^(2+) and the sensor.展开更多
A pseudorotaxane and its polypseudorotaxanes formed between pillar[5]arene moieties and noctylpyrazinium cations as novel fluorescent sensors for the selective detection of halogen ions were reported.A collapse of the...A pseudorotaxane and its polypseudorotaxanes formed between pillar[5]arene moieties and noctylpyrazinium cations as novel fluorescent sensors for the selective detection of halogen ions were reported.A collapse of these pillar[5]arene-based pseudorotaxanes and polypseudorotaxanes occurred upon the addition of Cl,Br,and I(tetrabutylammonium salts),respectively,leading to their fluorescence recovery.The fluorescence enhancement of the pseudorotaxane and the polypseudorotaxanes increases in the order of I展开更多
In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morpholo...In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.展开更多
A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to valu...A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to value the stability of probe. The affinities of SWNT to five common surfactants (SDS, DBS, Triton X-100, Tween-20 and Tween-80) were investigated by real-time fluorescence method. The effects of Mg^2+ and pH on the fluorescence intensity of self-assembled quenched sensor were performed. The fluorescent emission spectra were used to measure the responses of self-assembled quenched fluorescent of ssDNA/SWNTs to different concentration surfactant(Triton X-100). The FAM-DNA wrapped SWNTs probe was stable in a wide temperature range (5 ℃ to 80℃). The binding strength of surfactants and single-stranded DNA (ssDNA) on SWNTs surfaces was shown as follows: Triton X-100〉DBS〉Tween-20〉Tween-80〉ssDNA〉SDS, and the optimized reaction conditions included pH 7.4 and 10 mmol/L Mg2+. The fluorescence of FAM-ssDNA wrapped SWNTs was proportionally recovered as a result of adding different concentrations of Triton X- 100, which realizes the quantitative detection of Triton X- 100.展开更多
A novel and simple fluorescent molecular sensor,1-pyrenecarboxaldehyde thiosemicarbazone(Hpytsc),was synthesized.Its higher sensitivity and selectivity to mercury(Ⅱ) ion were studied through absorption and emissi...A novel and simple fluorescent molecular sensor,1-pyrenecarboxaldehyde thiosemicarbazone(Hpytsc),was synthesized.Its higher sensitivity and selectivity to mercury(Ⅱ) ion were studied through absorption and emission channels.The UV-vis spectra show that the increasing mercury(Ⅱ) ion concentrations result in the decreasing absorption intensity.The fluorescence monomer emission of Hpytsc is enhanced upon binding mercury(Ⅱ) ion,which should be due to the 1:1 complex formation between Hpytsc and metal ion.展开更多
Two novel rhodamine-based fluorescence enhanced molecular probes (RA1 and RA2) were synthesized, which were both designed as comparative fiuoroionophore and chromophore for the optical detection of Hg^2+. The recog...Two novel rhodamine-based fluorescence enhanced molecular probes (RA1 and RA2) were synthesized, which were both designed as comparative fiuoroionophore and chromophore for the optical detection of Hg^2+. The recognizing behaviors were investigated both experimentally and computationally. They exhibited high selectivity and sensitivity for Hg^2+ over other commonly coexistent metal ions in CH3CN/H2O (1:1, V/V) solution. Test shows that hydroxy benzene of rich electron was beneficial to the chelate of Hg^2+ with sensors. The detection limit was measured to be at least 0.14 p.mol/L. After addition of Hg^2+, the color changed from colourless to pink, which was easily and hydrogel sensor. detected by the naked eye in both solution展开更多
A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals with...A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals without causing any discernible change of maximum fluorescence emission wavelength(λ max) was observed upon the addition of Cu^2+.Importantly,ACADAN is capable of recognizing Cu^2+ selectively in aqueous media in the presence of various biologically relevant metal ions and the prevalent toxic metal ions in the environment with high sensitivity(detection limit was 0.1 μmol/L).展开更多
A new benzoazacrown ether fluorescence sensor was synthesized with 9-anthrylmethyl chloride and benzoaza-15-crown-5 in CH3CN, which particularly shows a strong affinity for Zn2+. Its fluorescence quantum yield increas...A new benzoazacrown ether fluorescence sensor was synthesized with 9-anthrylmethyl chloride and benzoaza-15-crown-5 in CH3CN, which particularly shows a strong affinity for Zn2+. Its fluorescence quantum yield increase more than one order of magnitude and a red shift could be noticed when passing from the apolar to the polar solvent.展开更多
Increasing use of silver in various fields has caused Ag^(+)pollution in water environment,taking great threats to people’s health.As a consequence,establishing rapid and reliable methods for sensitive determination ...Increasing use of silver in various fields has caused Ag^(+)pollution in water environment,taking great threats to people’s health.As a consequence,establishing rapid and reliable methods for sensitive determination of Ag^(+)is of great significance.Fluorescent(FL)sensors based on carbon dots(CDs),an excellent carbonaceous nanomaterial with strong and stable fluorescence,have absorbed extensive attentions in analysis of pollutants due to its advantages of carbon sources being readily available,low cost,easy operation and fast response.Moreover,ion-imprinting is a better way to increase the selectivity of the proposed method.Present work described an effective method for the sensitive measurement of silver ion in water samples in combination with magnetic ion-imprinted solid phase extraction and CDs based fluorescent sensor,which took full advantages of easy separation and high enrichment of magnetic solid phase extraction,high selectivity of ion-imprinting technology,and sensitivity and rapid response of fluorescent sensor from CDs.Sulfur-doped CDs derived from dithizone and magnetic ion-imprinted nanomaterial were prepared,and characterized with Fourier transform infrared spectroscopy and transmission electron microscope,etc.Magnetic Ag^(+)imprinted nanomaterial based solid phase extraction was employed for separating and enriching Ag^(+)from water samples.The significant parameters were optimized in detail.Under the optimal conditions,the proposed method provided good linearity in the range of 0.01-0.4μmol/L and low detection limit of 3 nmol/L.The reliability of the proposed method was validated with real water samples,and the results demonstrated that the proposed method was simple,robust,selective and sensitive detection tool for Ag^(+)in real water samples.展开更多
An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-s...An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-step hydrothermal approach,and various techniques were applied to investigate the morphology,structure,and optical properties of the carbon dots.Under the optimal experimental conditions,4-nitrophenol rapidly quenched the fluorescence of carbon dots as a result of the inner filter eff ect(IFE).The fluorescence intensity of carbon dots was linear with the concentration of 4-nitrophenol(1–150μmol/L)and the limit of detection was 0.32μmol/L.The fluorescence was gradually recovered as the cerium(IV)concentration(0.5–100μmol/L)increased in CDs/4-NP,and the limit of detection was 0.16μmol/L.The sensor showed good selectivity and demonstrated high accuracy for the analysis of 4-nitrophenol and cerium(IV)in actual water samples.展开更多
A novel series of calix[4]azacrown derivatives with the reaction between calix[4]azacrown and the different fluorophore derivatives,which may be useful fluorescent receptors,have been synthesized and structurally char...A novel series of calix[4]azacrown derivatives with the reaction between calix[4]azacrown and the different fluorophore derivatives,which may be useful fluorescent receptors,have been synthesized and structurally characterized by IR,~1H NMR,^(13)C NMR and MS.From their analysis data,it was found those compounds adopted a cone conformation.展开更多
Fluorescent carbon dots(CDs)have been identified as potential nanosensors and attracted tremendous research interests in wide areas including anti-counterfeiting,environmental and biological sensing and imaging in con...Fluorescent carbon dots(CDs)have been identified as potential nanosensors and attracted tremendous research interests in wide areas including anti-counterfeiting,environmental and biological sensing and imaging in considering of the attractive optical properties.In this work,we present a CDs based fluorescent sensor from polyvinylpyrrolidone,citric acid,and methionine as precursors by hydrothermal approach.The selective quantifying of Fe^(3+)and ascorbic acid(AA)are based on the fluorescent on-off-on process,in which the fluorescent quenching is induced by the coordination of the Fe^(3+)on the surface of the CDs,while the fluorescence recovery is mainly attributed to redox reaction between Fe^(3+)and AA,breaking the coordination and bringing the fluorescence back.Inspired by the good water solubility and biocompatibility,significant photostability,superior photobleaching resistance as well as high selectivity,sensitivity,and interference immunity,which are constructed mainly from the N,S-doping and methionine surface functionalization,the CDs have not only been employed as fluorescence ink in multiple anticounterfeiting printing and confidential document writing or transmitting,but also been developed as promising fluorescence sensors in solution and solid by CDs doped test strips and hydrogels for effectively monitoring and removing of Fe^(3+)and AA in environmental aqueous solution.The CDs have been also implemented as effective diagnostic candidates for imaging and tracking of Fe^(3+)and AA in living cells,accelerating the understanding of their function and importance in related biological processes for the prevention and treatment specific diseases.展开更多
Cell metabolism plays vital roles in organismal development,but it has been much less studied than transcriptional and epigenetic control of developmental programs.The difficulty might be largely attributed to the lac...Cell metabolism plays vital roles in organismal development,but it has been much less studied than transcriptional and epigenetic control of developmental programs.The difficulty might be largely attributed to the lack of in situ metabolite assays.Genetically encoded fluorescent sensors are powerful tools for noninvasive metabolic monitoring in living cells and in vivo by highly spatiotemporal visualization.Among all living organisms,the NAD(H)and NADP(H)pools are essential for maintaining redox homeostasis and for modulating cellular metabolism.Here,we introduce NAD(H)and NADP(H)biosensors,present example assays in developing organisms,and describe promising prospects for how sensors contribute to developmental biology research.展开更多
A novel, rapid and simple CdTe quantum dots (QDs) based technology platform was established for selective and sensitive determination of vitamin B6 in aqueous solution. It can perform accurate and reproducible quant...A novel, rapid and simple CdTe quantum dots (QDs) based technology platform was established for selective and sensitive determination of vitamin B6 in aqueous solution. It can perform accurate and reproducible quantification of vitamin B6 in pharmaceutical with satisfactory results.展开更多
In the methanolic solution, the selectivity of rhodamine hydrazide (RhH) was simply switched from Cu2+ to Hg2+ ions. For the optimal absorption of RhH onto a solid-phase membrane, pure methanol was used to dissolv...In the methanolic solution, the selectivity of rhodamine hydrazide (RhH) was simply switched from Cu2+ to Hg2+ ions. For the optimal absorption of RhH onto a solid-phase membrane, pure methanol was used to dissolve RhH prior to the impregnation. Of solid-phase membranes tested, the filter paper was chosen due to its cost-effectiveness and good detection limit of Hg2+ ion. The detection limit of the RhH impregnated filter paper for the detection of Hg2+ ion was determined to be under 2 ppm both fluorescent and colorimetric detection.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.21804105)by the Fundamental Research Funds for the Central Universities(No.5003515037)supported by the Huazhong University of Science and Technology Start-up Fund to Xu YU.
文摘Fluorescent nanoparticles have good chemical stability and photostability,controllable optical properties and larger stokes shift.In light of their designability and functionability,the fluorescent nanoparticles are widely used as the fluorescent probes for diverse applications.To enhance the sensitivity and selectivity,the combination of the fluorescent nanoparticles with the molecularly imprinted polymer,i.e.molecularly imprinted fluorescent nanoparticles(MIFN),was an effective way.The sensor based on MIFN(the MIFN sensor)could be more compatible with the complex sample matrix,which was especially widely adopted in medical and biological analysis.In this mini-review,the construction method,detective mechanism and types of MIFN sensors are elaborated.The current applications of MIFN sensors in pharmaceutical analysis,including pesticides/herbicide,veterinary drugs/drugs residues and human related proteins,are highlighted based on the literature in the recent three years.Finally,the research prospect and development trend of the MIFN sensor are forecasted.
基金financial support from the National Natural Science Foundation of China(Grant No.21801016)the Science and Technology on Applied Physical Chemistry Laboratory(Grant No.6142602220304)。
文摘In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.
基金the National Natural Science Foundation of China(No.20876090)the Foundation for Research Initiation of Shaanxi University of Science&Technology(No.BJ09-15)Foundation for Innovative Research Team of Shaanxi University of Science&Technology(No.TD09-04)for financial support
文摘Structurally simple salicylaldehyde-based fluoreseent sensors for amino acids have been obtained by one-step or two-step synthesis.These sensors show significant fluorescence enhancement in the presence of many amino acids at concentrations as low as 10~5 mol/L.The reversible reaction of the aldehydes with amino acids to form imines in aqueous solution is proposed to account for the observed fluorescence enhancement.
基金supported by the National Key Research and Development Program of China(2017YFA050400 and2017YFC0906900)the National Natural Science Foundation of China(31722033,91649123,31671484,31225008,and 31470833)+4 种基金the Shanghai Science and Technology Commission(14XD1401400,16430723100,and 15YF1402600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(to YZ)Shanghai Young Top-notch Talent(to YZ)the State Key Laboratory of Bioreactor Engineering(to YY)Fundamental Research Funds for the Central Universities(to YY and YZ)
文摘The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte- neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neu- ronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here,we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.
基金supported by the National Natural Science Foundation of China (No. 21074085)the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金the Graduate Student Innovation Training Project of Jiangsu Province (No. KYLX_1241)the State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
文摘Three novel rhodamine-based Hg^2+ fluorescent sensors were designed and synthesized. The sensors could work in semi-aqueous solutions with nearly neutral p H and showed high selectivity and sensitivity to Hg^2+ with remarkable fluorescence enhancement. For these three sensors, the linear working range broadened(0–80, 0–100 and 0–140 μmol/L, respectively) and the sensitivity increased(7.7, 15.5 and 17.6 folds of the fluorescence enhancement and 512, 66.2 and 37.6 ppb of the detection limit) with the rising of the thiourea-unit numbers. Furthermore the sensors exhibited excellent interference immunity to multiple environmentally and biologically relevant metal ions. Pond and tap water assay showed good practicability of the sensors. The number of the bound Hg^(2+) equaling to that of the thiourea units and the irreversible recognition process implied a new interaction way between Hg^(2+) and the sensor.
基金the financial support of the National Natural Science Foundation of China (No. 21202083)Natural Science Foundation of Jiangsu (Nos. BK2011055, BK2011551)the China Postdoctoral Science Foundation (No. 2012M511717)
文摘A pseudorotaxane and its polypseudorotaxanes formed between pillar[5]arene moieties and noctylpyrazinium cations as novel fluorescent sensors for the selective detection of halogen ions were reported.A collapse of these pillar[5]arene-based pseudorotaxanes and polypseudorotaxanes occurred upon the addition of Cl,Br,and I(tetrabutylammonium salts),respectively,leading to their fluorescence recovery.The fluorescence enhancement of the pseudorotaxane and the polypseudorotaxanes increases in the order of I
文摘In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.
基金Projects (21075032, 21005026, 21135001) supported by the National Natural Science Foundation of ChinaProject (llJJ5012) supported by Hunan Provincial Natural Science Foundation, China
文摘A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to value the stability of probe. The affinities of SWNT to five common surfactants (SDS, DBS, Triton X-100, Tween-20 and Tween-80) were investigated by real-time fluorescence method. The effects of Mg^2+ and pH on the fluorescence intensity of self-assembled quenched sensor were performed. The fluorescent emission spectra were used to measure the responses of self-assembled quenched fluorescent of ssDNA/SWNTs to different concentration surfactant(Triton X-100). The FAM-DNA wrapped SWNTs probe was stable in a wide temperature range (5 ℃ to 80℃). The binding strength of surfactants and single-stranded DNA (ssDNA) on SWNTs surfaces was shown as follows: Triton X-100〉DBS〉Tween-20〉Tween-80〉ssDNA〉SDS, and the optimized reaction conditions included pH 7.4 and 10 mmol/L Mg2+. The fluorescence of FAM-ssDNA wrapped SWNTs was proportionally recovered as a result of adding different concentrations of Triton X- 100, which realizes the quantitative detection of Triton X- 100.
基金financed by the Graduate Innovation Foundation of Logistic Engineering University(Chongqing, China)
文摘A novel and simple fluorescent molecular sensor,1-pyrenecarboxaldehyde thiosemicarbazone(Hpytsc),was synthesized.Its higher sensitivity and selectivity to mercury(Ⅱ) ion were studied through absorption and emission channels.The UV-vis spectra show that the increasing mercury(Ⅱ) ion concentrations result in the decreasing absorption intensity.The fluorescence monomer emission of Hpytsc is enhanced upon binding mercury(Ⅱ) ion,which should be due to the 1:1 complex formation between Hpytsc and metal ion.
文摘Two novel rhodamine-based fluorescence enhanced molecular probes (RA1 and RA2) were synthesized, which were both designed as comparative fiuoroionophore and chromophore for the optical detection of Hg^2+. The recognizing behaviors were investigated both experimentally and computationally. They exhibited high selectivity and sensitivity for Hg^2+ over other commonly coexistent metal ions in CH3CN/H2O (1:1, V/V) solution. Test shows that hydroxy benzene of rich electron was beneficial to the chelate of Hg^2+ with sensors. The detection limit was measured to be at least 0.14 p.mol/L. After addition of Hg^2+, the color changed from colourless to pink, which was easily and hydrogel sensor. detected by the naked eye in both solution
基金Supported by the National Natural Science Foundation of China(Nos.30672560,81172982)the Accented Project for Natural Scientific Research of Universities in Guangdong Province,China(No.05Z012)
文摘A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals without causing any discernible change of maximum fluorescence emission wavelength(λ max) was observed upon the addition of Cu^2+.Importantly,ACADAN is capable of recognizing Cu^2+ selectively in aqueous media in the presence of various biologically relevant metal ions and the prevalent toxic metal ions in the environment with high sensitivity(detection limit was 0.1 μmol/L).
文摘A new benzoazacrown ether fluorescence sensor was synthesized with 9-anthrylmethyl chloride and benzoaza-15-crown-5 in CH3CN, which particularly shows a strong affinity for Zn2+. Its fluorescence quantum yield increase more than one order of magnitude and a red shift could be noticed when passing from the apolar to the polar solvent.
基金supported by the National Natural Science Foundation of China(No.21976211).
文摘Increasing use of silver in various fields has caused Ag^(+)pollution in water environment,taking great threats to people’s health.As a consequence,establishing rapid and reliable methods for sensitive determination of Ag^(+)is of great significance.Fluorescent(FL)sensors based on carbon dots(CDs),an excellent carbonaceous nanomaterial with strong and stable fluorescence,have absorbed extensive attentions in analysis of pollutants due to its advantages of carbon sources being readily available,low cost,easy operation and fast response.Moreover,ion-imprinting is a better way to increase the selectivity of the proposed method.Present work described an effective method for the sensitive measurement of silver ion in water samples in combination with magnetic ion-imprinted solid phase extraction and CDs based fluorescent sensor,which took full advantages of easy separation and high enrichment of magnetic solid phase extraction,high selectivity of ion-imprinting technology,and sensitivity and rapid response of fluorescent sensor from CDs.Sulfur-doped CDs derived from dithizone and magnetic ion-imprinted nanomaterial were prepared,and characterized with Fourier transform infrared spectroscopy and transmission electron microscope,etc.Magnetic Ag^(+)imprinted nanomaterial based solid phase extraction was employed for separating and enriching Ag^(+)from water samples.The significant parameters were optimized in detail.Under the optimal conditions,the proposed method provided good linearity in the range of 0.01-0.4μmol/L and low detection limit of 3 nmol/L.The reliability of the proposed method was validated with real water samples,and the results demonstrated that the proposed method was simple,robust,selective and sensitive detection tool for Ag^(+)in real water samples.
基金National Natural Science Foundation of China(22274096 and 22272119)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)+2 种基金the Science and Technology Committee of Shanghai Municipality(2022-4-ZD-03)the Shanghai Pilot Program for Basic Researchthe Fundamental Research Funds for the Central Universities。
文摘An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-step hydrothermal approach,and various techniques were applied to investigate the morphology,structure,and optical properties of the carbon dots.Under the optimal experimental conditions,4-nitrophenol rapidly quenched the fluorescence of carbon dots as a result of the inner filter eff ect(IFE).The fluorescence intensity of carbon dots was linear with the concentration of 4-nitrophenol(1–150μmol/L)and the limit of detection was 0.32μmol/L.The fluorescence was gradually recovered as the cerium(IV)concentration(0.5–100μmol/L)increased in CDs/4-NP,and the limit of detection was 0.16μmol/L.The sensor showed good selectivity and demonstrated high accuracy for the analysis of 4-nitrophenol and cerium(IV)in actual water samples.
基金the National High Technology Research and Development Program 863(No. 2008AA03A315)The Research Fund for the Doctoral Program of High Education(No.20060056017).
文摘A novel series of calix[4]azacrown derivatives with the reaction between calix[4]azacrown and the different fluorophore derivatives,which may be useful fluorescent receptors,have been synthesized and structurally characterized by IR,~1H NMR,^(13)C NMR and MS.From their analysis data,it was found those compounds adopted a cone conformation.
基金supported by the National Natural Science Foundation of China(Nos.22171223,22179107,22077099,and 21807087)the Technology Innovation Leading Program of Shaanxi(No.2020TG−031)+2 种基金the Shaanxi Provincial Natural Science Fund Project(No.2018JQ2061)the Xi’an City Science and Technology Project(Nos.2020KJRC011 and 2019218214GXRC018CG019−GXYD18.4)the Outstanding Youth Science Fund of Xi’an University of Science and Technology(No.2018YQ3-14).
文摘Fluorescent carbon dots(CDs)have been identified as potential nanosensors and attracted tremendous research interests in wide areas including anti-counterfeiting,environmental and biological sensing and imaging in considering of the attractive optical properties.In this work,we present a CDs based fluorescent sensor from polyvinylpyrrolidone,citric acid,and methionine as precursors by hydrothermal approach.The selective quantifying of Fe^(3+)and ascorbic acid(AA)are based on the fluorescent on-off-on process,in which the fluorescent quenching is induced by the coordination of the Fe^(3+)on the surface of the CDs,while the fluorescence recovery is mainly attributed to redox reaction between Fe^(3+)and AA,breaking the coordination and bringing the fluorescence back.Inspired by the good water solubility and biocompatibility,significant photostability,superior photobleaching resistance as well as high selectivity,sensitivity,and interference immunity,which are constructed mainly from the N,S-doping and methionine surface functionalization,the CDs have not only been employed as fluorescence ink in multiple anticounterfeiting printing and confidential document writing or transmitting,but also been developed as promising fluorescence sensors in solution and solid by CDs doped test strips and hydrogels for effectively monitoring and removing of Fe^(3+)and AA in environmental aqueous solution.The CDs have been also implemented as effective diagnostic candidates for imaging and tracking of Fe^(3+)and AA in living cells,accelerating the understanding of their function and importance in related biological processes for the prevention and treatment specific diseases.
基金This research is supported by National Key Research and Development Program of China(2019YFA0904800 to Y.Zhao)NSFC(32030065,92049304,32121005 to Y.Zhao,31901033 to T.L.)+4 种基金Research Unit of New Techniques for Live-cell Metabolic Imaging(Chinese Academy of Medical Sciences,2019RU01,2019-I2M-5-013 to Y.Zhao)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Y.Zhao)Innovative research team of high-level local universities in Shanghai,the Shanghai Science and Technology Commission(19YF1411300 to T.L.)China Postdoctoral Science Foundation(2019 M651413 to T.L.)the State Key Laboratory of Bioreactor Engineering,the Fundamental Research Funds for the Central Universities.
文摘Cell metabolism plays vital roles in organismal development,but it has been much less studied than transcriptional and epigenetic control of developmental programs.The difficulty might be largely attributed to the lack of in situ metabolite assays.Genetically encoded fluorescent sensors are powerful tools for noninvasive metabolic monitoring in living cells and in vivo by highly spatiotemporal visualization.Among all living organisms,the NAD(H)and NADP(H)pools are essential for maintaining redox homeostasis and for modulating cellular metabolism.Here,we introduce NAD(H)and NADP(H)biosensors,present example assays in developing organisms,and describe promising prospects for how sensors contribute to developmental biology research.
基金the National Natural Science Foundation of China (No.20275014)for financially supporting this work.
文摘A novel, rapid and simple CdTe quantum dots (QDs) based technology platform was established for selective and sensitive determination of vitamin B6 in aqueous solution. It can perform accurate and reproducible quantification of vitamin B6 in pharmaceutical with satisfactory results.
文摘In the methanolic solution, the selectivity of rhodamine hydrazide (RhH) was simply switched from Cu2+ to Hg2+ ions. For the optimal absorption of RhH onto a solid-phase membrane, pure methanol was used to dissolve RhH prior to the impregnation. Of solid-phase membranes tested, the filter paper was chosen due to its cost-effectiveness and good detection limit of Hg2+ ion. The detection limit of the RhH impregnated filter paper for the detection of Hg2+ ion was determined to be under 2 ppm both fluorescent and colorimetric detection.