A new method for the simultaneous determination of fluorine and iodine in urine by ion chromatography (IC) with electrochemical pretreatment has been developed. The pretreatment was performed in a novel electrochemi...A new method for the simultaneous determination of fluorine and iodine in urine by ion chromatography (IC) with electrochemical pretreatment has been developed. The pretreatment was performed in a novel electrochemical oxidationneutralization device (EOND), in which iodide of the sample was oxidized to iodate and the alkaline digestion sample solution was neutralized. Under the optimized conditions, the limits of detection (LOD, S/N = 3) were 2.5 μg/L for fluoride and 20 μg/L for iodate, respectively. The recoveries were in the range of 93-102% for fluoride and 86-98% for iodate.展开更多
The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercializ...The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.展开更多
Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, a number of limitations exist regarding the use of DLC, for instance, its tribological characteristics. In this articl...Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, a number of limitations exist regarding the use of DLC, for instance, its tribological characteristics. In this article, the fluorine and silicon incorporated diamond-like carbon (F-DLC and Si-DLC) films are studied, taking into account the tribological properties of these films compared with pure DLC. The structures of the films were characterized using Auger electron spectroscopy and Raman spectroscopy. The hardness and elastic modulus were evaluated by nanoindentation hardness testing. The friction behavior was assessed using ball-on-disk friction testing and optical microscopy. The results indicated that the deposited DLC films contained 0.6 - 2.1 at.% F and 26.7 - 38.4 at.% Si. A decrease in the hardness and elastic modulus was obtained as F increased in content, which was the opposite of the behavior observed in the Si-DLC films. This was due to the shifting in the G-peak position, which is related to the sp3 bonding fraction in the film. When measured in ambient air, the addition of Si into the DLC film strongly influenced the friction coefficient, whereas doping with F only slightly influenced the films, as evidenced by their wear scars. In addition, only a 26.7 at.% Si-DLC film showed a very low friction coefficient when measured in dry air. This was attributed to the formation of silicon-rich transfer layer on the ball surfaces. Therefore, the addition of Si with 26.7 at.% content to a DLC film can be considered beneficial for improving tribological performance.展开更多
In a magnetized plasma column generated from an electronegative gas, negative-ions accumulate around the plasma column via radial diffusion. In this study, a dc discharge is applied in SF6 gas to produce a plasma colu...In a magnetized plasma column generated from an electronegative gas, negative-ions accumulate around the plasma column via radial diffusion. In this study, a dc discharge is applied in SF6 gas to produce a plasma column, and the radial density profile of negative-ions is measured by Langmuir probes using the modified Bohm criterion. The gas pressure and discharge current dependences of negative-ion density are also measured. It is found that the negative-ion density of 8.0 × 1017 m-3 is obtained around the plasma column at r = 1.0 cm when SF6 pressure is 0.13 Pa and discharge current is 0.50 A. The negative-ion density has radial gradient, and the electron density is much lower in this region.展开更多
For preparing fluorinated quinolone antibiotic medicine locally used in stomatology, simultaneous determination of norfloxacin, ciprofloxacin, and enoxacin was carried out by multiphase ion chromatography with fluores...For preparing fluorinated quinolone antibiotic medicine locally used in stomatology, simultaneous determination of norfloxacin, ciprofloxacin, and enoxacin was carried out by multiphase ion chromatography with fluorescence detection. Quinolone antibiotics were separated by Dionex OmniPac PAX-500 column with an eluent of 15 mmol/L H2SO4 and 35% methanol (v/v) at a flow-rate of 1.0 ml/min and detected with fluorescence with excitation and emission wave lengths of 347 ran and 420 ran respectively. The detection limits (S/N=3) of norfloxacin, ciprofloxacin and enoxacin were 50, 105 and 80 ng/ml respectively. The relative standard deviations of retention time, peak area and peak height were less than 1.1% and good linear relationship resulted. The developed method was applied to pharmaceutical formulations and biological fluids.展开更多
Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle...Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly improved by the addition of 10%ETFEC into the normal carbonate electrolytes,e.g.,the capacity retention improved from 65.3%to 77.1%after 200 cycles at 60℃.The main reason can be ascribed to the high stability of ETFEC which prevents large oxidation of the electrolyte on the cathode surface.In addition,we also explore the feasibility of electrolytes using single fluoriated-solvents with and without additives.Our results show that the cycle performance of LNMO material can be greatly improved in 1 MLiPF6+pure ETFEC-solvent system with 2 wt%ethylene carbonate(EC)or ethylene sulfate(DTD).The capacity retention of the LNMO materials is 93%after 300 cycles,even better than that of carbonate-based electrolytes.It is shown that the additives are oxidized on the surface of LNMO particles and contribute to the formation of cathode/electrolyte interphase(CEI)films.This composite CEI film plays a crucial role in suppressing the serious decomposition of the electrolyte at high voltage.展开更多
A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. Th...A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. The result shows that the speed of F^- adsorption is controlled by membrane diffusion when F^- concentration is relatively low, which is expressed by the kinetic equation of diffusion Q=0.0005(Ci-C)(t-ti)+0.3967, or by vacancy diffusion when F^- concentration is relatively high, which is expressed by the kinetic equation of diffusion In[C(o, t)]=8.4718-0.5048Int. Based on the feature of CHAP for adsorbing F^- dissolved in water and its special channel of the structure of CO3^3- modified hydroxyapatite, models of vacancy diffusion and membrane diffusion were established.展开更多
The physical and electrical properties of BF<sub>2</sub><sup>+</sup> implanted polysilicon films subjectedto rapid thermal annealing(RTA)are presented.It is found that the out diffusion of F ...The physical and electrical properties of BF<sub>2</sub><sup>+</sup> implanted polysilicon films subjectedto rapid thermal annealing(RTA)are presented.It is found that the out diffusion of F and itssegregation at polysilicon/silicon oxide interface during RTA are the major causes of F anomalousmigration.Fluorine bubbles were observed in BF<sub>2</sub><sup>+</sup> implanted samples at doses of 1×10<sup>15</sup> and5×10<sup>15</sup>cm<sup>-2</sup> after RTA.展开更多
The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate le...The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate leakage and breakdown voltage show that each experiences a significant change in a short time stress, and then keeps unchangeable. The migration phenomenon of fluorine ions is further validated by the electron redistribution and breakdown voltage enhancement after off-state stress. These results suggest that the low power fluorine implant ion stays in an unstable state. It causes the electrical properties of AlGaN/GaN HEMT to present early degradation. A new migration and degradation mechanism of the low power fluorine implant ion under the off-stress electrical stress is proposed. The low power fluorine ions would drift at the beginning of the off-state stress, and then accumulate between gate and drain nearby the gate side. Due to the strong electronegativity of fluorine, the accumulation of the front fluorine ions would prevent the subsequent fluorine ions from drifting, thereby alleviating further the degradation of AlGaN/GaN HEMT electrical properties.展开更多
Fluorinated oligomer gel is suitable to the electrolyte of dye-sensitized solar cell for low cost production. In this article, addition of pyridine was investigated for the purpose of enhancing the short current densi...Fluorinated oligomer gel is suitable to the electrolyte of dye-sensitized solar cell for low cost production. In this article, addition of pyridine was investigated for the purpose of enhancing the short current density. Two kinds of ionic liquids were tested: imidazolium and pyrazolium systems. The two different stages of adding pyridine to the electrolyte were considered and the amount of pyridine was studied. It was found that the electrolyte including pyrazolium ionic liquids to which pyridine was added before the mixing with fluorinated oligomer showed the highest electric conductivity, short current density and open voltage. This resulted in the highest conversion efficiency of 4%. As the amount of pyridine increased, the fill factor and the open voltage were improved at first, and then the short current density increased. If the pyridine was added more, the short current density conversely decreased.展开更多
Fluorinated oligomer gel is suitable to the electrolyte of dye sensitized solar cell. This article studied mainly in the scope of electric conductivity, including ionic liquid in the electrolyte. It was found that the...Fluorinated oligomer gel is suitable to the electrolyte of dye sensitized solar cell. This article studied mainly in the scope of electric conductivity, including ionic liquid in the electrolyte. It was found that the ratio of mixing with dimetyl sulfoxide and the concentration of LiI affect the conductivity. The behavior is different depending on the type of ionic liquid. Although the mixing ionic liquid enhances the conductivity, the short circuit current density of assembled solar cell with it was suppressed so much.展开更多
We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of im...We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of importance in order to solve the problem in the durability of the cell. We investigated, in this article, the effect of Pt deposition on the anode of the cell. The Pt was deposited by means of a DC sputtering technique. The studies showed that the deposition time strongly affected both open voltage and short-circuit current of the cell. The adaptive thickness of the Pt layer was determined to be 10 nm for the non-cross-linked fluorinated gel electrolyte cells.展开更多
文摘A new method for the simultaneous determination of fluorine and iodine in urine by ion chromatography (IC) with electrochemical pretreatment has been developed. The pretreatment was performed in a novel electrochemical oxidationneutralization device (EOND), in which iodide of the sample was oxidized to iodate and the alkaline digestion sample solution was neutralized. Under the optimized conditions, the limits of detection (LOD, S/N = 3) were 2.5 μg/L for fluoride and 20 μg/L for iodate, respectively. The recoveries were in the range of 93-102% for fluoride and 86-98% for iodate.
基金supported by the National Natural Science Foundation of China(No.91963118 and 52102213)Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.
文摘Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, a number of limitations exist regarding the use of DLC, for instance, its tribological characteristics. In this article, the fluorine and silicon incorporated diamond-like carbon (F-DLC and Si-DLC) films are studied, taking into account the tribological properties of these films compared with pure DLC. The structures of the films were characterized using Auger electron spectroscopy and Raman spectroscopy. The hardness and elastic modulus were evaluated by nanoindentation hardness testing. The friction behavior was assessed using ball-on-disk friction testing and optical microscopy. The results indicated that the deposited DLC films contained 0.6 - 2.1 at.% F and 26.7 - 38.4 at.% Si. A decrease in the hardness and elastic modulus was obtained as F increased in content, which was the opposite of the behavior observed in the Si-DLC films. This was due to the shifting in the G-peak position, which is related to the sp3 bonding fraction in the film. When measured in ambient air, the addition of Si into the DLC film strongly influenced the friction coefficient, whereas doping with F only slightly influenced the films, as evidenced by their wear scars. In addition, only a 26.7 at.% Si-DLC film showed a very low friction coefficient when measured in dry air. This was attributed to the formation of silicon-rich transfer layer on the ball surfaces. Therefore, the addition of Si with 26.7 at.% content to a DLC film can be considered beneficial for improving tribological performance.
文摘In a magnetized plasma column generated from an electronegative gas, negative-ions accumulate around the plasma column via radial diffusion. In this study, a dc discharge is applied in SF6 gas to produce a plasma column, and the radial density profile of negative-ions is measured by Langmuir probes using the modified Bohm criterion. The gas pressure and discharge current dependences of negative-ion density are also measured. It is found that the negative-ion density of 8.0 × 1017 m-3 is obtained around the plasma column at r = 1.0 cm when SF6 pressure is 0.13 Pa and discharge current is 0.50 A. The negative-ion density has radial gradient, and the electron density is much lower in this region.
基金Project supported by the National Natural Science Foundation of China (Nos.20375035 and 20527005)the Natural Science Foundation of Zhejiang Province (No.Z404105), China
文摘For preparing fluorinated quinolone antibiotic medicine locally used in stomatology, simultaneous determination of norfloxacin, ciprofloxacin, and enoxacin was carried out by multiphase ion chromatography with fluorescence detection. Quinolone antibiotics were separated by Dionex OmniPac PAX-500 column with an eluent of 15 mmol/L H2SO4 and 35% methanol (v/v) at a flow-rate of 1.0 ml/min and detected with fluorescence with excitation and emission wave lengths of 347 ran and 420 ran respectively. The detection limits (S/N=3) of norfloxacin, ciprofloxacin and enoxacin were 50, 105 and 80 ng/ml respectively. The relative standard deviations of retention time, peak area and peak height were less than 1.1% and good linear relationship resulted. The developed method was applied to pharmaceutical formulations and biological fluids.
基金financially supported by National Key Research and Development Program of China(Grant no.2018YFB010440)the National Natural Science Foundation of China(Grant nos.21761132030,21621091).
文摘Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly improved by the addition of 10%ETFEC into the normal carbonate electrolytes,e.g.,the capacity retention improved from 65.3%to 77.1%after 200 cycles at 60℃.The main reason can be ascribed to the high stability of ETFEC which prevents large oxidation of the electrolyte on the cathode surface.In addition,we also explore the feasibility of electrolytes using single fluoriated-solvents with and without additives.Our results show that the cycle performance of LNMO material can be greatly improved in 1 MLiPF6+pure ETFEC-solvent system with 2 wt%ethylene carbonate(EC)or ethylene sulfate(DTD).The capacity retention of the LNMO materials is 93%after 300 cycles,even better than that of carbonate-based electrolytes.It is shown that the additives are oxidized on the surface of LNMO particles and contribute to the formation of cathode/electrolyte interphase(CEI)films.This composite CEI film plays a crucial role in suppressing the serious decomposition of the electrolyte at high voltage.
基金the key scientific foundation(No.2001Z20004)the Hubei Provincial Department of Education and the natural science foundation(2005ABA024)
文摘A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. The result shows that the speed of F^- adsorption is controlled by membrane diffusion when F^- concentration is relatively low, which is expressed by the kinetic equation of diffusion Q=0.0005(Ci-C)(t-ti)+0.3967, or by vacancy diffusion when F^- concentration is relatively high, which is expressed by the kinetic equation of diffusion In[C(o, t)]=8.4718-0.5048Int. Based on the feature of CHAP for adsorbing F^- dissolved in water and its special channel of the structure of CO3^3- modified hydroxyapatite, models of vacancy diffusion and membrane diffusion were established.
文摘The physical and electrical properties of BF<sub>2</sub><sup>+</sup> implanted polysilicon films subjectedto rapid thermal annealing(RTA)are presented.It is found that the out diffusion of F and itssegregation at polysilicon/silicon oxide interface during RTA are the major causes of F anomalousmigration.Fluorine bubbles were observed in BF<sub>2</sub><sup>+</sup> implanted samples at doses of 1×10<sup>15</sup> and5×10<sup>15</sup>cm<sup>-2</sup> after RTA.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.61334002) and the National Natural Science Foundation of China(Grant Nos.61604114,61404097,and 61504099)
文摘The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate leakage and breakdown voltage show that each experiences a significant change in a short time stress, and then keeps unchangeable. The migration phenomenon of fluorine ions is further validated by the electron redistribution and breakdown voltage enhancement after off-state stress. These results suggest that the low power fluorine implant ion stays in an unstable state. It causes the electrical properties of AlGaN/GaN HEMT to present early degradation. A new migration and degradation mechanism of the low power fluorine implant ion under the off-stress electrical stress is proposed. The low power fluorine ions would drift at the beginning of the off-state stress, and then accumulate between gate and drain nearby the gate side. Due to the strong electronegativity of fluorine, the accumulation of the front fluorine ions would prevent the subsequent fluorine ions from drifting, thereby alleviating further the degradation of AlGaN/GaN HEMT electrical properties.
文摘Fluorinated oligomer gel is suitable to the electrolyte of dye-sensitized solar cell for low cost production. In this article, addition of pyridine was investigated for the purpose of enhancing the short current density. Two kinds of ionic liquids were tested: imidazolium and pyrazolium systems. The two different stages of adding pyridine to the electrolyte were considered and the amount of pyridine was studied. It was found that the electrolyte including pyrazolium ionic liquids to which pyridine was added before the mixing with fluorinated oligomer showed the highest electric conductivity, short current density and open voltage. This resulted in the highest conversion efficiency of 4%. As the amount of pyridine increased, the fill factor and the open voltage were improved at first, and then the short current density increased. If the pyridine was added more, the short current density conversely decreased.
文摘Fluorinated oligomer gel is suitable to the electrolyte of dye sensitized solar cell. This article studied mainly in the scope of electric conductivity, including ionic liquid in the electrolyte. It was found that the ratio of mixing with dimetyl sulfoxide and the concentration of LiI affect the conductivity. The behavior is different depending on the type of ionic liquid. Although the mixing ionic liquid enhances the conductivity, the short circuit current density of assembled solar cell with it was suppressed so much.
文摘We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of importance in order to solve the problem in the durability of the cell. We investigated, in this article, the effect of Pt deposition on the anode of the cell. The Pt was deposited by means of a DC sputtering technique. The studies showed that the deposition time strongly affected both open voltage and short-circuit current of the cell. The adaptive thickness of the Pt layer was determined to be 10 nm for the non-cross-linked fluorinated gel electrolyte cells.