Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-f...Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC' s Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.展开更多
The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation forc...The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.展开更多
To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting s...To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.展开更多
文摘Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC' s Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.
文摘The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.
基金supported by the:Direction Générale de la Recherche Scientifique et du Développement Technologique(DGRSDT).
文摘To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.