Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of...Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of carbon doping on the lattice structure and superconducting properties of Mg^(11)B_(2)bulks were evaluated using X-ray powder diffraction,high resolution transmission electron microscopy,scanning electron microscopy and magnetization measurements.Precise refinement of structural parameters indicates successful substitution of carbon in Mg^(11)B_(2)bulks.The critical current density(Jc)of carbon doped Mg^(11)B_(2)synthesized at 650℃was enhanced more than two times compared with the pure Mg^(11)B_(2)bulk.Similar improvement was observed for the Mg^(11)B_(2)bulks heat-treated at 800℃.This enhancement is due to successful substitution of biomass-derived carbon with high surface area into Mg^(11)B_(2)lattice.The flux pinning mechanism of pure and doped Mg^(11)B_(2)bulks were investigated using the Dew-Hughes model.This study provides information regarding enhancement of the Jc of low activation Mg^(11)B_(2)superconductors suitable for next-generation fusion magnets.展开更多
The COREP (CORE Power) code has been developed by the Reactor Physics Department of the Jozef Stefan Institute for the nuclear design calculations of the PWR (Pressurized Water Reactor) cores. The code and applied...The COREP (CORE Power) code has been developed by the Reactor Physics Department of the Jozef Stefan Institute for the nuclear design calculations of the PWR (Pressurized Water Reactor) cores. The code and applied methods have been developed and tested only for the determination of the pin power in the reactor core. Recent development of the three dimensional visualization capabilities at the author's department enables fine mesh neutron flux and power distribution presentation in the whole reactor region. The COREP code has been supplemented with additional option to enable generation of fme mesh neutron flux data in the core and reflector domain. Accuracy of the generated fine mesh results has been determined for the 2-D IAEA and typical NPP Krsko case.展开更多
基金the Queensland Government for Advance Queensland Research Fellowship in partnership with Siemens Energy(Aust)Pty Ltd and QUT which partially supported this workby the Australian Research Council,Australia(Grant No.LP160101784)。
文摘Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of carbon doping on the lattice structure and superconducting properties of Mg^(11)B_(2)bulks were evaluated using X-ray powder diffraction,high resolution transmission electron microscopy,scanning electron microscopy and magnetization measurements.Precise refinement of structural parameters indicates successful substitution of carbon in Mg^(11)B_(2)bulks.The critical current density(Jc)of carbon doped Mg^(11)B_(2)synthesized at 650℃was enhanced more than two times compared with the pure Mg^(11)B_(2)bulk.Similar improvement was observed for the Mg^(11)B_(2)bulks heat-treated at 800℃.This enhancement is due to successful substitution of biomass-derived carbon with high surface area into Mg^(11)B_(2)lattice.The flux pinning mechanism of pure and doped Mg^(11)B_(2)bulks were investigated using the Dew-Hughes model.This study provides information regarding enhancement of the Jc of low activation Mg^(11)B_(2)superconductors suitable for next-generation fusion magnets.
基金Sponsored by the Science and Technology Commission of Shanghai Municipality(13111102300 and 14521102800)the National Natural Science Foundation of China(11174193 and 51202141)+1 种基金the Ministry of Science and Technology of China(973 Projects,2011CBA00105)the Science and Technology Commission of Shanghai Municipality(14DZ2260700)
文摘The COREP (CORE Power) code has been developed by the Reactor Physics Department of the Jozef Stefan Institute for the nuclear design calculations of the PWR (Pressurized Water Reactor) cores. The code and applied methods have been developed and tested only for the determination of the pin power in the reactor core. Recent development of the three dimensional visualization capabilities at the author's department enables fine mesh neutron flux and power distribution presentation in the whole reactor region. The COREP code has been supplemented with additional option to enable generation of fme mesh neutron flux data in the core and reflector domain. Accuracy of the generated fine mesh results has been determined for the 2-D IAEA and typical NPP Krsko case.