This paper discusses the important role that flux profile relations play in momentum flux, sensible heat flux, and latent heat flux simulations in CoLM (Common Land Model) and compares the application of three flux ...This paper discusses the important role that flux profile relations play in momentum flux, sensible heat flux, and latent heat flux simulations in CoLM (Common Land Model) and compares the application of three flux profile relation schemes in CoLM by means of the Loess Plateau Land-Atmosphere Interaction Pilot Experiment (LOPEX) of 2005. It reveals that the results simulated by the model barely changed in the original flux profile schemes of the models a^er eliminating the very stable condition and the very unstable condition, and there were only tiny changes in numerical values. This indicates that the corrected terms added to fm(ξm),fh(ξh) were very tiny and can be ignored under very stable and very unstable circumstances. According to a comparison of the three flux profile relations, the simulation results were basically coherent by using any CoLM: the correlation coefficient of the simulation value and the observed value was 0.89, and this bears on the coherence with the numerical procedures for the flux pro- file relations under unstable circumstances. The simulation results were improved considerably by utilizing the Lobocki flux pro- file schemes, which numerical procedures under unstable circumstances differed significantly fi'om other three flux profile schemes; in this case the correlation coefficient of the value of simulation and the observed value became 0.95. In the next itera- tion of this study, it will be of great importance for the development of the land surface process model to continue experimenting with the application of some novel flux profile schemes in the land surface process models in typical regions.展开更多
Reliable estimation of the mass-flux profiles of aeolian sediment is essential for predicting sediment transport rates accurately and designing measures to cope with wind-erosion. Vertical mass-flux profiles from seve...Reliable estimation of the mass-flux profiles of aeolian sediment is essential for predicting sediment transport rates accurately and designing measures to cope with wind-erosion. Vertical mass-flux profiles from seventeen wind-erosion events were re-evaluated using five typical models based on observed data obtained from a smooth bare field at the southern fringe of the Taklimakan Desert, China. The results showed that the exponential-function model and the logarithmic-function model exhibited the poorest fit between observed and predicted mass-flux profiles. The power-function model and the modified power-function model improved the fit to field data to an equivalent extent, while the five-parameter combined-function model with a scale constant(σ) of 0.00001 m(different from the σ value proposed by Fryear, which represented the height above which 50% of the total mass flux occurred) was verified as the best for describing the vertical aeolian sediment mass-flux profiles using goodness of fit(R2) and the Akaike Information Criterion(AIC) values to evaluate model performance. According to relationships among model parameters, the modified power model played a prominent explanatory role in describing the vertical profiles of the observed data, whereas the exponential model played a coordinating role. In addition, it was found that the vertical profiles could not be extrapolated using the five selected models or easily estimated using an efficient model without field observations by a near-surface sampler at 0 to 0.05 m.展开更多
As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynami...As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.展开更多
A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures meas...A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.展开更多
An iterative method was developed for incorporating the well bore boundary into the finite difference model of water flow in variably saturated porous media. Six cases were presented involving groundwater pumping or i...An iterative method was developed for incorporating the well bore boundary into the finite difference model of water flow in variably saturated porous media. Six cases were presented involving groundwater pumping or injection to demonstrate the advantages of the iterative method over the traditional method. For the iterative method, the total flux gradually approached the well discharge and the flux profile was non-uniform. And the iterative method took into account the variation of well bore water table. Compared to the traditional method, the iterative method can simulate the variably saturated flow caused by pumping or injection more realistically.展开更多
To investigate the values of 10-m drag coefficient(CD ) in different coastal areas under the influence of tropical cyclones, the present study used the observational data from four towers in different coastal areas of...To investigate the values of 10-m drag coefficient(CD ) in different coastal areas under the influence of tropical cyclones, the present study used the observational data from four towers in different coastal areas of the South China Sea(SCS) during six tropical cyclone(TC) passages, and employed the eddy covariance method and the flux profile method.The analysis of footprint showed that the fluxes at Zhizai Island(ZZI), Sanjiao Island(SJI) and Donghai Island(DHI)were influenced basically by the ocean, and the flux at Shangyang Town(SYT) was influenced mainly by the land. The results showed that the dependence relationships of CD on 10-m wind speed(U10) in four different coastal areas under the influence of TCs were different. CD at ZZI and SJI initially increased and then decreased as U10 increased, similar to the pattern over the ocean. CD at ZZI and SJI represented the values over shallow water with seawater depths of ~7 m and ~2 m, respectively. Moreover, the critical wind speed at which CD peaked gradually decreased as the seawater depth became shallower in the coastal areas. CD at DHI and SYT decreased monotonously as U10 increased, similar to the pattern over the land. CD at DHI represented the value over the transition zone from shallow water to coastal land, and CD at SYT represented the value over the coastal land. Meanwhile, the eddy covariance method and the flux profile method were compared at ZZI and SYT during TC passages. It was found that their CD values obtained by the two methods were close. Finally, the parameterizations of observed u*and CD as a function of U10 over four different coastal areas were given under the influence of high winds. These parameterizations of observed CD may be used in high-resolution numerical models for landfalling TC forecast.展开更多
Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by...Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by surface erosion that may occur after the construction of the solar PVpower station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary toinvestigate the characteristics of wind-sand movement under the interference of solar PV array. The studywas undertaken by measuring sediment transport of different wind directions above shifting dunes andthree observation sites around the PV panels in the Hobq Desert, China. The results showed that the twoparameterexponential function provides better fit for the measured flux density profiles to the near-surfaceof solar PV array. However, the saltation height of sand particles changes with the intersection anglebetween the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting duneswas always the greatest, while that around the test PV panels varied accordingly to the wind direction.Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction.The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When theintersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reducesto 82.58% compared with the shifting dunes. The results of our study expand our understanding of theformation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the designand control engineering plans for solar PV array in sandy areas that operate according to the wind regime.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41005009,41375001,and 41175009)
文摘This paper discusses the important role that flux profile relations play in momentum flux, sensible heat flux, and latent heat flux simulations in CoLM (Common Land Model) and compares the application of three flux profile relation schemes in CoLM by means of the Loess Plateau Land-Atmosphere Interaction Pilot Experiment (LOPEX) of 2005. It reveals that the results simulated by the model barely changed in the original flux profile schemes of the models a^er eliminating the very stable condition and the very unstable condition, and there were only tiny changes in numerical values. This indicates that the corrected terms added to fm(ξm),fh(ξh) were very tiny and can be ignored under very stable and very unstable circumstances. According to a comparison of the three flux profile relations, the simulation results were basically coherent by using any CoLM: the correlation coefficient of the simulation value and the observed value was 0.89, and this bears on the coherence with the numerical procedures for the flux pro- file relations under unstable circumstances. The simulation results were improved considerably by utilizing the Lobocki flux pro- file schemes, which numerical procedures under unstable circumstances differed significantly fi'om other three flux profile schemes; in this case the correlation coefficient of the value of simulation and the observed value became 0.95. In the next itera- tion of this study, it will be of great importance for the development of the land surface process model to continue experimenting with the application of some novel flux profile schemes in the land surface process models in typical regions.
基金financially supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (GYHY201106025)the National Natural Science Foundation of China (41471031)
文摘Reliable estimation of the mass-flux profiles of aeolian sediment is essential for predicting sediment transport rates accurately and designing measures to cope with wind-erosion. Vertical mass-flux profiles from seventeen wind-erosion events were re-evaluated using five typical models based on observed data obtained from a smooth bare field at the southern fringe of the Taklimakan Desert, China. The results showed that the exponential-function model and the logarithmic-function model exhibited the poorest fit between observed and predicted mass-flux profiles. The power-function model and the modified power-function model improved the fit to field data to an equivalent extent, while the five-parameter combined-function model with a scale constant(σ) of 0.00001 m(different from the σ value proposed by Fryear, which represented the height above which 50% of the total mass flux occurred) was verified as the best for describing the vertical aeolian sediment mass-flux profiles using goodness of fit(R2) and the Akaike Information Criterion(AIC) values to evaluate model performance. According to relationships among model parameters, the modified power model played a prominent explanatory role in describing the vertical profiles of the observed data, whereas the exponential model played a coordinating role. In addition, it was found that the vertical profiles could not be extrapolated using the five selected models or easily estimated using an efficient model without field observations by a near-surface sampler at 0 to 0.05 m.
基金supported by the National Natural Science Foundation of China (41601002, 41871011)the China Postdoctoral Science Foundation (2017M623115)+1 种基金the Science Foundation of Shaanxi Province (2018JQ4010)the Fundamental Research Funds for the Central Universities (GK201903077)
文摘As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.
基金financially supported by the National Natural Science Foundation of China(Nos.51525401,51274054,U1332115,51401044)the Science and Technology Planning Project of Dalian(No.2013A16GX110)+1 种基金the China Postdoctoral Science Foundation(2015M581331)the Fundamental Research Funds for the Central Universities
文摘A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.
基金Supported by National Natural Science Foundation of China (No. 51079068)
文摘An iterative method was developed for incorporating the well bore boundary into the finite difference model of water flow in variably saturated porous media. Six cases were presented involving groundwater pumping or injection to demonstrate the advantages of the iterative method over the traditional method. For the iterative method, the total flux gradually approached the well discharge and the flux profile was non-uniform. And the iterative method took into account the variation of well bore water table. Compared to the traditional method, the iterative method can simulate the variably saturated flow caused by pumping or injection more realistically.
基金Project of Science and Technology Department of Guangdong Province(2019B111101002)National Natural Science Foundation of China(41675019,41675021)。
文摘To investigate the values of 10-m drag coefficient(CD ) in different coastal areas under the influence of tropical cyclones, the present study used the observational data from four towers in different coastal areas of the South China Sea(SCS) during six tropical cyclone(TC) passages, and employed the eddy covariance method and the flux profile method.The analysis of footprint showed that the fluxes at Zhizai Island(ZZI), Sanjiao Island(SJI) and Donghai Island(DHI)were influenced basically by the ocean, and the flux at Shangyang Town(SYT) was influenced mainly by the land. The results showed that the dependence relationships of CD on 10-m wind speed(U10) in four different coastal areas under the influence of TCs were different. CD at ZZI and SJI initially increased and then decreased as U10 increased, similar to the pattern over the ocean. CD at ZZI and SJI represented the values over shallow water with seawater depths of ~7 m and ~2 m, respectively. Moreover, the critical wind speed at which CD peaked gradually decreased as the seawater depth became shallower in the coastal areas. CD at DHI and SYT decreased monotonously as U10 increased, similar to the pattern over the land. CD at DHI represented the value over the transition zone from shallow water to coastal land, and CD at SYT represented the value over the coastal land. Meanwhile, the eddy covariance method and the flux profile method were compared at ZZI and SYT during TC passages. It was found that their CD values obtained by the two methods were close. Finally, the parameterizations of observed u*and CD as a function of U10 over four different coastal areas were given under the influence of high winds. These parameterizations of observed CD may be used in high-resolution numerical models for landfalling TC forecast.
基金This research was supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China(R&D and Demonstration of Ecological Deserticulture Technology of Solar Photovoltaic Power Station in Sand Area)and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052).
文摘Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by surface erosion that may occur after the construction of the solar PVpower station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary toinvestigate the characteristics of wind-sand movement under the interference of solar PV array. The studywas undertaken by measuring sediment transport of different wind directions above shifting dunes andthree observation sites around the PV panels in the Hobq Desert, China. The results showed that the twoparameterexponential function provides better fit for the measured flux density profiles to the near-surfaceof solar PV array. However, the saltation height of sand particles changes with the intersection anglebetween the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting duneswas always the greatest, while that around the test PV panels varied accordingly to the wind direction.Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction.The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When theintersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reducesto 82.58% compared with the shifting dunes. The results of our study expand our understanding of theformation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the designand control engineering plans for solar PV array in sandy areas that operate according to the wind regime.