The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The res...The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The results showed that the crystallization ratio of mold flux increases with the basicity and the content of Na2O, CaF2, Li2O and NaF, and decreases with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. However, the crystallization temperature of mold flux rises with the basicity and the content of NaF, Na2O and CaF2, and reduces with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. But for Li2O, crystallization temperature decreases firstly to a minimum value at 2%, and then increases gradually with the increase of Li2O.展开更多
The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking parti...The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking particles obtained by use of moored sediment traps. The POC:PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.展开更多
Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromag...Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromagnetic performance of partitioned stator switched flux permanent magnet(PM)machines(PS-SFPMMs)is investigated in this paper.Since the armature windings and PMs are located in two separated stators and PMs are stationary,PS-SFPMMs have high fault tolerance capabilities.To maximize the torque performance,the PM of inner stator pole should be aligned with outer stator pole when n is odd while the iron rib of inner stator pole should be aligned with outer stator pole when n is even.No matter what n is selected,the rotor pole number NR can be any integers except the phase number and its multiples.The analysis results indicate that the optimal NR is closed to(NIS+NOS)/2 and it is odd when n is odd while it is even when n is even.Meanwhile,symmetrical phase back-EMF waveform will be obtained when the ratio of Min(NOS,NIS)to the greatest common divisor of Min(NOS,NIS)and NR is even.Based on the optimal rotor pole numbers for 6-pole outer stator with different n and corresponding optimal relative position together with same rated copper loss,the average torque is improved by 18.4%,25.1%and 25.7%respectively in PS-SFPMMs with n equal to 2,3 and 4 when compared with PS-SFPMM with n equal to 1.The analyses are validated by experiment results of the prototype machine.展开更多
The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire f...The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire feeding speed and torch oscillating amplitude hare significant effects on the dopth-to-width ratio (D/W) of welds. The D/W ratio of welds increases significantly with the increase of welding speed without the oscillating of welding torch. It increased (from 0. 14 to 0. 26 ) with the increase of wire feeding speed while the torch oscillating. And it decreased linearly with the increase of torch oscillating amplitude. However, the influelwe of oscillating speed, wire extension and welding voltage on the D/W ratio of welds was not obvious.展开更多
We present the first results of a program to identify the unknown bright active galactic nuclei (AGN) in the ROSAT All Sky Survey Bright Source Catalog (RASSBSC). We have used lg C+04 R as an alternative expression fo...We present the first results of a program to identify the unknown bright active galactic nuclei (AGN) in the ROSAT All Sky Survey Bright Source Catalog (RASSBSC). We have used lg C+04 R as an alternative expression for lg (f x f opt ), where C is X-ray count rate and R stands for R magnitude. Then a high X-ray-to-optical flux ratio criterion has been used to select an AGN sample with 165 unidentified X-ray sources for optical spectroscopy. At present over 93% of the X-ray sources in the sample have been fully identified in the following classes: emission line AGNs, clusters of galaxies, BL Lacertae objects, and stars.展开更多
Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way...Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way. In a humid region, by applying the Bowen ratio concept and optimum procedure on the soil surface, sensible and latent heat fluxes are estimated using net radiation (Rn) and heat flux into the ground (G). The method uses air temperature and humidity at a single height by reciprocally determining the soil surface temperature (Ts) and the relative humidity (rehs). This feature can be remarkably extended to the utilization. The validity of the method is confirmed by comparing of observed and estimated latent (lE) and sensible heat flux (H) using the eddy covariance method. The hourly change of the lE, H, Ts and rehs on the soil surface, yearly change of lE and H and relationship of estimated lE and H versus observed are clarified. Furthermore, monthly evapotranspiration is estimated from the lE. The research was conducted using hourly data of FLUXNET at a site of Japan, three sites of the United States and two sites of Europe in humid regions having over 1000 mm of annual precipitation.展开更多
Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have ...Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have not achieved the independent adjustment of these two parameters. In this paper, an ion-beam-background-plasma system was produced with hotcathode discharge in a double plasma device separated by two adjacent grids, with which the beam energy and flux ratio (the ratio between the beam flux and total ion flux) can be controlled independently. It is shown that the discharge voltage (i.e., voltage across the hot-cathode and anode) and the voltage drop between the two separation grids can be used to effectively control the beam energy while the flux ratio is not affected by these voltages. The flux ratio depends sensitively on hot-filaments heating current whose influence on the beam energy is relatively weak, and thus enabling approximate control of the flux ratio展开更多
A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and S...A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.展开更多
In this paper,some effort is provided to optimize the geometry of a concrete hollow brick(used in the construction of building roofs)in order to increase the related thermal resistance,thereby reducing energy consumpt...In this paper,some effort is provided to optimize the geometry of a concrete hollow brick(used in the construction of building roofs)in order to increase the related thermal resistance,thereby reducing energy consumption.The analysis is conducted for three different configurations of the hollow concrete bricks.Coupling of conduction,natural convection and thermal radiation phenomena is considered.Moreover,the flows are assumed to be laminar and two-dimensional for the whole range of parameters examined.The conservation equations are solved by a finite difference method based on the control volumes approach and the SIMPLE algorithm for velocity-pressure coupling.The results show that the aspect ratio affects neither the nature of the fluid flow nor the number of convective cells.However,the extension of the circulation cells increases with this parameter.Moreover,the cavities with a large aspect ratio lead to significant reductions in the heat transfer through the hollow block,these reductions reaching approximately 14%.展开更多
Global food demand requires that soils be used intensively for agriculture, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). Soil management practices can cause carbon to be either ...Global food demand requires that soils be used intensively for agriculture, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). Soil management practices can cause carbon to be either sequestered or emitted, with corresponding uncertain influence on atmospheric CO2 concentrations. The situation is further complicated by the lack of CO2 flux measurements for African subsistence farms. For widespread application in remote areas, a simple experimental methodology is desired. As a first step, the present study investigated the use of Bowen Ratio Energy Balance (BREB) instrumentation to measure the energy balance and CO2 fluxes of two contrasting crop management systems, till and no-till, in the lowlands within the mountains of Lesotho. Two BREB micrometeorological systems were established on 100-m by 100-m sites, both planted with maize (Zea mays) but under either conventional (plow, disk-disk) or no-till soil mangement systems. The results demonstrate that with careful maintenance of the instruments by appropriately trained local personnel, the BREB approach offers substantial benefits in measuring real time changes in agroecosystem CO2 flux. The periods where the two treatments could be compared indicated greater CO2 sequestration over the no-till treatments during both the growing and non-growing seasons.展开更多
Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared wi...Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared with permanent magnet machines due to the saturation.Therefore,in this paper,two WFSF machines with single-and double-layer DC windings,respectively,are optimized for the maximum torque.The end-winding(EW)lengths differ in these two machines,which can affect the optimal design.Design parameters including the DC to armature winding copper loss ratio,slot area ratio and split ratio are optimized when two machines have the same copper loss and overall sizes.In addition,the influence of the flux density ratio,total copper loss,air-gap length and aspect ratio on the optimal split ratio is investigated using the finite element method and results are explained through the analytical model accounting for the saturation.It is discovered that the EWs have no effect on the optimal copper loss ratio,which is unity.In terms of the slot area ratio,the machine with single-layer DC windings prefers smaller DC slot areas than armature slot areas.In the WFSF machine with longer EWs,the optimal split ratio becomes smaller.Moreover,compared with other parameters,the flux density ratio can significantly affect the optimal split ratio.展开更多
A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and ...A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.展开更多
In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. Th...In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. The results show all kinds of fluxes increase the depth to width ratio and the multi-component systems are more significant. The largest increment of the weld depth to width ratio is 159%,obtained by using of the F12 series flux. It is proved that by using of the active flux to increase the depth to width ratio of micro laser welding is feasible.展开更多
Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ...Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.展开更多
The corundum plates with a groove were used to freeze molten flux into solid slice to simulate the flux film formed in continuous casting mold,and thereby to study the formation mechanism of flux film with different s...The corundum plates with a groove were used to freeze molten flux into solid slice to simulate the flux film formed in continuous casting mold,and thereby to study the formation mechanism of flux film with different surface roughness.The effect of some factors on the surface roughness of flux film,such as reheating rate,cooling rate,flux film thickness and crystallization ratio,was discussed.展开更多
Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment ...Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.展开更多
A high-density, high-flux circulating fluidized bed (CFB) riser (100 mm in ID and 10.614 m in height) was ap- plied in a wide range of operating conditions (with solid fluxes up to 400 kg/m2s and superficial gas ...A high-density, high-flux circulating fluidized bed (CFB) riser (100 mm in ID and 10.614 m in height) was ap- plied in a wide range of operating conditions (with solid fluxes up to 400 kg/m2s and superficial gas velocities up to 12 m/s) to examine its radial non-uniformity dynamics. The solids holdup was determined through the use of a fiber-optic probe at 11 axial levels. The results indicated that under all operating conditions, the high superficial gas velocity and low solid flux- es maintained a low radial non-uniformity index (RNI). The high-density/flux CFB riser had several unique characteristics, so that the peak of the radial solids holdup profile occurred at a position with r/R=0.8. The RNI and solids holdup at the cross-sectional position had a good logarithmic relationship at the low-density condition (with a mean solids holdup of 〈0.2), and the RNI decreased when the mean solids holdup exceeded 0.2. Investigation of the dynamics of stratified injec- tion revealed that the feed ratio had an important effect on G, and on solids holdup distribution. A novel "〈" shaped axial solids holdup profile was found. Gs decreased sharply when the up-flow feed ratio exceeded 0.5, and RNI was lowest when the up-flow feed ratio was 1.展开更多
With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
文摘The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The results showed that the crystallization ratio of mold flux increases with the basicity and the content of Na2O, CaF2, Li2O and NaF, and decreases with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. However, the crystallization temperature of mold flux rises with the basicity and the content of NaF, Na2O and CaF2, and reduces with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. But for Li2O, crystallization temperature decreases firstly to a minimum value at 2%, and then increases gradually with the increase of Li2O.
文摘The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking particles obtained by use of moored sediment traps. The POC:PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.
文摘Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromagnetic performance of partitioned stator switched flux permanent magnet(PM)machines(PS-SFPMMs)is investigated in this paper.Since the armature windings and PMs are located in two separated stators and PMs are stationary,PS-SFPMMs have high fault tolerance capabilities.To maximize the torque performance,the PM of inner stator pole should be aligned with outer stator pole when n is odd while the iron rib of inner stator pole should be aligned with outer stator pole when n is even.No matter what n is selected,the rotor pole number NR can be any integers except the phase number and its multiples.The analysis results indicate that the optimal NR is closed to(NIS+NOS)/2 and it is odd when n is odd while it is even when n is even.Meanwhile,symmetrical phase back-EMF waveform will be obtained when the ratio of Min(NOS,NIS)to the greatest common divisor of Min(NOS,NIS)and NR is even.Based on the optimal rotor pole numbers for 6-pole outer stator with different n and corresponding optimal relative position together with same rated copper loss,the average torque is improved by 18.4%,25.1%and 25.7%respectively in PS-SFPMMs with n equal to 2,3 and 4 when compared with PS-SFPMM with n equal to 1.The analyses are validated by experiment results of the prototype machine.
文摘The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire feeding speed and torch oscillating amplitude hare significant effects on the dopth-to-width ratio (D/W) of welds. The D/W ratio of welds increases significantly with the increase of welding speed without the oscillating of welding torch. It increased (from 0. 14 to 0. 26 ) with the increase of wire feeding speed while the torch oscillating. And it decreased linearly with the increase of torch oscillating amplitude. However, the influelwe of oscillating speed, wire extension and welding voltage on the D/W ratio of welds was not obvious.
文摘We present the first results of a program to identify the unknown bright active galactic nuclei (AGN) in the ROSAT All Sky Survey Bright Source Catalog (RASSBSC). We have used lg C+04 R as an alternative expression for lg (f x f opt ), where C is X-ray count rate and R stands for R magnitude. Then a high X-ray-to-optical flux ratio criterion has been used to select an AGN sample with 165 unidentified X-ray sources for optical spectroscopy. At present over 93% of the X-ray sources in the sample have been fully identified in the following classes: emission line AGNs, clusters of galaxies, BL Lacertae objects, and stars.
文摘Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way. In a humid region, by applying the Bowen ratio concept and optimum procedure on the soil surface, sensible and latent heat fluxes are estimated using net radiation (Rn) and heat flux into the ground (G). The method uses air temperature and humidity at a single height by reciprocally determining the soil surface temperature (Ts) and the relative humidity (rehs). This feature can be remarkably extended to the utilization. The validity of the method is confirmed by comparing of observed and estimated latent (lE) and sensible heat flux (H) using the eddy covariance method. The hourly change of the lE, H, Ts and rehs on the soil surface, yearly change of lE and H and relationship of estimated lE and H versus observed are clarified. Furthermore, monthly evapotranspiration is estimated from the lE. The research was conducted using hourly data of FLUXNET at a site of Japan, three sites of the United States and two sites of Europe in humid regions having over 1000 mm of annual precipitation.
基金supported by National Natural Science Foundation of China(Nos.11575183,11175177)
文摘Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have not achieved the independent adjustment of these two parameters. In this paper, an ion-beam-background-plasma system was produced with hotcathode discharge in a double plasma device separated by two adjacent grids, with which the beam energy and flux ratio (the ratio between the beam flux and total ion flux) can be controlled independently. It is shown that the discharge voltage (i.e., voltage across the hot-cathode and anode) and the voltage drop between the two separation grids can be used to effectively control the beam energy while the flux ratio is not affected by these voltages. The flux ratio depends sensitively on hot-filaments heating current whose influence on the beam energy is relatively weak, and thus enabling approximate control of the flux ratio
基金National Natural Science Foundation of China(No.10405014)
文摘A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.
文摘In this paper,some effort is provided to optimize the geometry of a concrete hollow brick(used in the construction of building roofs)in order to increase the related thermal resistance,thereby reducing energy consumption.The analysis is conducted for three different configurations of the hollow concrete bricks.Coupling of conduction,natural convection and thermal radiation phenomena is considered.Moreover,the flows are assumed to be laminar and two-dimensional for the whole range of parameters examined.The conservation equations are solved by a finite difference method based on the control volumes approach and the SIMPLE algorithm for velocity-pressure coupling.The results show that the aspect ratio affects neither the nature of the fluid flow nor the number of convective cells.However,the extension of the circulation cells increases with this parameter.Moreover,the cavities with a large aspect ratio lead to significant reductions in the heat transfer through the hollow block,these reductions reaching approximately 14%.
文摘Global food demand requires that soils be used intensively for agriculture, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). Soil management practices can cause carbon to be either sequestered or emitted, with corresponding uncertain influence on atmospheric CO2 concentrations. The situation is further complicated by the lack of CO2 flux measurements for African subsistence farms. For widespread application in remote areas, a simple experimental methodology is desired. As a first step, the present study investigated the use of Bowen Ratio Energy Balance (BREB) instrumentation to measure the energy balance and CO2 fluxes of two contrasting crop management systems, till and no-till, in the lowlands within the mountains of Lesotho. Two BREB micrometeorological systems were established on 100-m by 100-m sites, both planted with maize (Zea mays) but under either conventional (plow, disk-disk) or no-till soil mangement systems. The results demonstrate that with careful maintenance of the instruments by appropriately trained local personnel, the BREB approach offers substantial benefits in measuring real time changes in agroecosystem CO2 flux. The periods where the two treatments could be compared indicated greater CO2 sequestration over the no-till treatments during both the growing and non-growing seasons.
基金supported in part by the National Key R&D Program of China under 2019YFB1503700by the National Natural Science Foundation of China under Grant 51677169。
文摘Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared with permanent magnet machines due to the saturation.Therefore,in this paper,two WFSF machines with single-and double-layer DC windings,respectively,are optimized for the maximum torque.The end-winding(EW)lengths differ in these two machines,which can affect the optimal design.Design parameters including the DC to armature winding copper loss ratio,slot area ratio and split ratio are optimized when two machines have the same copper loss and overall sizes.In addition,the influence of the flux density ratio,total copper loss,air-gap length and aspect ratio on the optimal split ratio is investigated using the finite element method and results are explained through the analytical model accounting for the saturation.It is discovered that the EWs have no effect on the optimal copper loss ratio,which is unity.In terms of the slot area ratio,the machine with single-layer DC windings prefers smaller DC slot areas than armature slot areas.In the WFSF machine with longer EWs,the optimal split ratio becomes smaller.Moreover,compared with other parameters,the flux density ratio can significantly affect the optimal split ratio.
基金This work was supported by the National Natural Science Foundation of China under Grant No.E-D0119-90202014the National Key Programme for Developing Basic Sciences of China under Great No.G1998040902.
文摘A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.
基金supported by National Natural Science Foundation of China(No.51565040)Science and Technology Planning Project of Jiangxi Province(20151BBE50034,20133BBE50021)Aviation Science Funds of China(2014ZE56016)
文摘In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. The results show all kinds of fluxes increase the depth to width ratio and the multi-component systems are more significant. The largest increment of the weld depth to width ratio is 159%,obtained by using of the F12 series flux. It is proved that by using of the active flux to increase the depth to width ratio of micro laser welding is feasible.
文摘Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.
文摘The corundum plates with a groove were used to freeze molten flux into solid slice to simulate the flux film formed in continuous casting mold,and thereby to study the formation mechanism of flux film with different surface roughness.The effect of some factors on the surface roughness of flux film,such as reheating rate,cooling rate,flux film thickness and crystallization ratio,was discussed.
文摘Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.
基金the financial support of the National Program on Key Basic Research Project (973 Program) of China (no. 2012CB215000)
文摘A high-density, high-flux circulating fluidized bed (CFB) riser (100 mm in ID and 10.614 m in height) was ap- plied in a wide range of operating conditions (with solid fluxes up to 400 kg/m2s and superficial gas velocities up to 12 m/s) to examine its radial non-uniformity dynamics. The solids holdup was determined through the use of a fiber-optic probe at 11 axial levels. The results indicated that under all operating conditions, the high superficial gas velocity and low solid flux- es maintained a low radial non-uniformity index (RNI). The high-density/flux CFB riser had several unique characteristics, so that the peak of the radial solids holdup profile occurred at a position with r/R=0.8. The RNI and solids holdup at the cross-sectional position had a good logarithmic relationship at the low-density condition (with a mean solids holdup of 〈0.2), and the RNI decreased when the mean solids holdup exceeded 0.2. Investigation of the dynamics of stratified injec- tion revealed that the feed ratio had an important effect on G, and on solids holdup distribution. A novel "〈" shaped axial solids holdup profile was found. Gs decreased sharply when the up-flow feed ratio exceeded 0.5, and RNI was lowest when the up-flow feed ratio was 1.
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.