期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Model-free Speed Control of Single-phase Flux Switching Motor with an Asymmetrical Rotor
1
作者 Zongsheng Zhang Congcong Guo 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期255-263,共9页
This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos... This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy. 展开更多
关键词 Asymmetrical rotor Model-free iterative control Prototype experiments Single-phase flux switching motor
下载PDF
Hybrid Excitation Flux Switching Motor with Permanent Magnet Placed at Middle of Field Coil Slots and High Filling Factor Windings 被引量:1
2
作者 T.Okada H.Matsumori +1 位作者 T.Kosaka N.Matsui 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第3期248-258,共11页
Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron e... Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive. 展开更多
关键词 Hybrid electric vehicle hybrid excitation flux switching motor rectangular wire traction motor variable flux motor.
下载PDF
Development of a New Flux Switching Transverse Flux Machine with the Ability of Linear Motion 被引量:4
3
作者 Chengcheng Liu Shaopeng Wang +3 位作者 Youhua Wang Gang Lei Youguang Guo Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 2018年第4期384-391,共8页
This paper proposes a new rotary flux switching transverse flux machine with the ability of linear motion(FSTFMaLM),in which both the stator and the rotor cores are made by using soft magnetic composite(SMC)materials.... This paper proposes a new rotary flux switching transverse flux machine with the ability of linear motion(FSTFMaLM),in which both the stator and the rotor cores are made by using soft magnetic composite(SMC)materials.With the special design pattern,for the rotary motion model,the proposed machine can combine both the advantages of the flux switching permanent magnet machine(FSPMM)and the transverse flux machine(TFM).It can output with relatively high torque density,and as there is no windings or the magnets on the rotor cores,the proposed machine can operate in the high speed region to improve the output power.With the adoption of the SMC materials,the manufacturing of this machine can be quite easy.By stacking the rotor core together and prolong it with the determined length in the axial direction,in addition with the special control algorithm,the proposed machine can have the ability of the linear motion.In this paper,the operation principle of this machine has been explained and the design methods are also presented.To seek the better performance,the main dimension of the machine is optimized,and for the performance evaluation,the finite element method(FEM)is adopted.The proposed machine can be used for the electric driving systems,robotic systems or other applications where the linear motion ability is required. 展开更多
关键词 flux switching linear motion high torque density soft magnetic composite(SMC) transverse flux machine
下载PDF
Design and Comparison of Electrically Excited Double Rotor Flux Switching Motor Drive Systems for Automotive Applications
4
作者 Xing Zhao Shuangxia Niu Weinong Fu 《CES Transactions on Electrical Machines and Systems》 2018年第2期191-199,共9页
This paper presents a cost-effective driving system for automotive applications based on a double rotor electrically excited flux switching machine(FSM).Benefiting from a double rotor topology,this FSM can realize a d... This paper presents a cost-effective driving system for automotive applications based on a double rotor electrically excited flux switching machine(FSM).Benefiting from a double rotor topology,this FSM can realize a drum winding design and thus winding ends are effectively shorten and the copper loss is mitigated.The machine structure,operation principle and design consideration are studied and further verified by time-stepping finite element method.Moreover,three topologies of drive circuit for the proposed FSM are introduced.By using electromagnetic-circuit coupling simulation,a comparison between three different three drive systems are performed,with focus on the system cost and overall electromagnetic performance,especially the effect of current control and torque ripple.A prototype is established and tested.Relevant experimental results verify the effectiveness of the proposed new FSM drive system. 展开更多
关键词 Double rotor electrically excited flux switching machine low cost applications.
下载PDF
Optimal Rotor Poles and Structure for Design of Consequent Pole Permanent Magnet Flux Switching Machine 被引量:2
5
作者 Wasiq Ullah Faisal Khan Muhammad Umair 《Chinese Journal of Electrical Engineering》 CSCD 2021年第1期118-127,共10页
Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses... Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses excessive rare earth PM volumes which ultimately increases machine the machine weight and PM cost.Moreover,the PMs extended at the stator yoke results in stator leakage flux which degrades the performance.To suppress the leakage flux and diminish the PM volume,the consequent pole PMFSM(CPPMFSM)with flux bridges and barriers encompassing partitioned circumferential and radial magnetized PMs is proposed,thereby ensuring an alternate magnetic path for the working harmonics which improves the modulation effect and flux distribution.Moreover,the influence of the rotor pole number on seven different rotor structures namely,curved rotor,trapezoidal rotor,wide rotor tooth tip,wide rotor base width,rectangular segmented and eccentric rotors are investigated based on the electromagnetic performance and stress distribution.Finite element analysis(FEA)reveals that the 12S-13P CPPMFSM with a wider rotor base offers comparatively better electromagnetic performance.Compare to the conventional PMFSM,the proposed CPPMFSM reduces the PM volume which minimizes the overall machine cost and weight,suppresses the torque ripples by 16.49%,diminishes total harmonic distortion(THD)by 35.24%and decreases cogging torque by 32.88%.Furthermore,the torque and power density are enhanced by 7.028%and 7.025%respectively. 展开更多
关键词 AC Machine consequent pole flux bridge flux switching machine permanent magnet rotor pole number rotor structure stress analysis
原文传递
Electromagnetic Performance Analysis of Flux-Switching Permanent Magnet Tubular Machine with Hybrid Cores 被引量:1
6
作者 Shaopeng Wang Chengcheng Liu +3 位作者 Youhua Wang Gang Lei Youguang Guo Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第1期43-52,共10页
The performance of traditional flux switching permanent magnet tubular machine(FSPMTM)are improved by using new material and structure in this paper.The existing silicon steel sheet making for all mover cores or part ... The performance of traditional flux switching permanent magnet tubular machine(FSPMTM)are improved by using new material and structure in this paper.The existing silicon steel sheet making for all mover cores or part of stator cores are replaced by soft magnetic composite(SMC)cores,and the lamination direction of the silicon steel sheet in stator cores have be changed.The eddy current loss of the machine with hybrid cores will be reduced greatly as the magnetic flux will not pass through the silicon steel sheet vertically.In order to reduce the influence of end effect,the unequal stator width design method is proposed.With the new design,the symmetry of the permanent magnet flux linkage has been improved greatly and the cogging force caused by the end effect has been reduced.Both 2-D and 3-D finite element methods(FEM)are applied for the quantitative analysis. 展开更多
关键词 flux switching permanent magnet tubular machine soft magnetic composite(SMC) hybrid cores unequal width stator finite element method(FEM).
下载PDF
Design of a Novel Dual Flux Modulation Machine with Consequent-Pole Spoke-Array Permanent Magnets in Both Stator and Rotor 被引量:4
7
作者 Ziyi Liang Yuting Gao +1 位作者 Dawei Li Ronghai Qu 《CES Transactions on Electrical Machines and Systems》 2018年第1期73-81,共9页
In this paper,a novel dual flux modulation(DFM)machine with consequent-pole spoke-array permanent magnets(PMs)in both stator and rotor is proposed to achieve a larger torque density than regular flux modulation machin... In this paper,a novel dual flux modulation(DFM)machine with consequent-pole spoke-array permanent magnets(PMs)in both stator and rotor is proposed to achieve a larger torque density than regular flux modulation machines.The stator has two portions of PMs,one is set next to the stator slot with circumferential magnetization,and the other is inserted between the stator yoke and flux bridge with radial magnetization.The rotor has consequent-pole spoke-array PMs and alternative flux bridges.The proposed DFMPM machine can be regarded as the combination of the flux switching PM(FSPM)machine and vernier PM(VPM)machine.First,the structure and operational principle are introduced.Then,the proposed 12-stator-slot/10-rotor-tooth dual flux modulation permanent magnet(DFMPM)machine is compared with the FSPM machine and VPM machine in terms of flux lines distribution,back-electromotive force(EMF),cogging torque and average torque.Finally,the four proposed DFMPM machines are optimized for maximum average torque and minimum ripple torque considering the effects of split ratio,slot opening ratio,PM depth,PM angle and iron angle. 展开更多
关键词 Dual flux modulation(DFM) flux bridges torque density flux switching(FS) vernier
下载PDF
Influence of Inner/Outer Stator Pole Ratio and Relative Position on Electromagnetic Performance of Partitioned Stator Switched Flux Permanent Magnet Machines 被引量:1
8
作者 J.T.Shi Z.Q.Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第3期259-268,共10页
Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromag... Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromagnetic performance of partitioned stator switched flux permanent magnet(PM)machines(PS-SFPMMs)is investigated in this paper.Since the armature windings and PMs are located in two separated stators and PMs are stationary,PS-SFPMMs have high fault tolerance capabilities.To maximize the torque performance,the PM of inner stator pole should be aligned with outer stator pole when n is odd while the iron rib of inner stator pole should be aligned with outer stator pole when n is even.No matter what n is selected,the rotor pole number NR can be any integers except the phase number and its multiples.The analysis results indicate that the optimal NR is closed to(NIS+NOS)/2 and it is odd when n is odd while it is even when n is even.Meanwhile,symmetrical phase back-EMF waveform will be obtained when the ratio of Min(NOS,NIS)to the greatest common divisor of Min(NOS,NIS)and NR is even.Based on the optimal rotor pole numbers for 6-pole outer stator with different n and corresponding optimal relative position together with same rated copper loss,the average torque is improved by 18.4%,25.1%and 25.7%respectively in PS-SFPMMs with n equal to 2,3 and 4 when compared with PS-SFPMM with n equal to 1.The analyses are validated by experiment results of the prototype machine. 展开更多
关键词 Inner/outer stator partitioned stator permanent magnet pole ratio relative position switched flux.
下载PDF
Optimal Designs of Wound Field Switched Flux Machines with Different DC Windings Configurations
9
作者 Wenting Wang Yuankui Wang +1 位作者 Enlin Ma Lijian Wu 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期359-367,共9页
Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared wi... Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared with permanent magnet machines due to the saturation.Therefore,in this paper,two WFSF machines with single-and double-layer DC windings,respectively,are optimized for the maximum torque.The end-winding(EW)lengths differ in these two machines,which can affect the optimal design.Design parameters including the DC to armature winding copper loss ratio,slot area ratio and split ratio are optimized when two machines have the same copper loss and overall sizes.In addition,the influence of the flux density ratio,total copper loss,air-gap length and aspect ratio on the optimal split ratio is investigated using the finite element method and results are explained through the analytical model accounting for the saturation.It is discovered that the EWs have no effect on the optimal copper loss ratio,which is unity.In terms of the slot area ratio,the machine with single-layer DC windings prefers smaller DC slot areas than armature slot areas.In the WFSF machine with longer EWs,the optimal split ratio becomes smaller.Moreover,compared with other parameters,the flux density ratio can significantly affect the optimal split ratio. 展开更多
关键词 Design End-winding Optimization Split ratio Wound field switched flux machine
下载PDF
Accurate 3D Thermal Network Development for Direct-drive Outer-rotor Hybrid-PM Flux-switching Generator
10
作者 Ali Zarghani Mohammad Farahzadi +1 位作者 Aghil Ghaheri Karim Abbaszadeh 《Chinese Journal of Electrical Engineering》 EI CSCD 2024年第2期80-92,共13页
Heat and thermal problems are major obstacles to achieving high power density in compact permanent magnet(PM)topologies.Consequently,a comprehensive,accurate,and rapid temperature rise estimation method is required fo... Heat and thermal problems are major obstacles to achieving high power density in compact permanent magnet(PM)topologies.Consequently,a comprehensive,accurate,and rapid temperature rise estimation method is required for novel electric machines to ensure safe and reliable operations.A unique three-dimensional(3D)lumped parameter thermal network(LPTN)is presented for accurate thermal modeling of a newly developed outer-rotor hybrid-PM flux switching generator(OR-HPMFSG)for direct-drive applications.First,the losses of the OR-HPMFSG are calculated using 3D finite element analysis(FEA).Subsequently,all machine components considering the thermal contact resistance,anisotropic thermal conductivity of materials,and various heat flow paths are comprehensively modeled based on the thermal resistances.In the proposed 3-D LPTN,internal nodes are considered to predict the average temperature as well as the hot spots of all active and passive components.Experimental measurements are performed on a prototype OR-HPMFSG to validate the efficiency of the 3-D LPTN.A comparison of the results at various operating points between the developed 3-D LPTN,experimental test,and FEA indicates that the 3-D LPTN quickly approximates the hotspot and mean temperature of all components under both transient and steady states with high accuracy. 展开更多
关键词 Direct-drive wind turbine hybrid-PM flux switching generator lumped parameter thermal network temperature estimation 3D thermal modeling
原文传递
Nonlinear magnetic network models for flux-switching permanent magnet machines 被引量:3
11
作者 zhang gan hua wei cheng ming 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第3期494-505,共12页
In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is bui... In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is built under cylindrical coordinates and enables the open-circuit air-gap flux-density distributions, phase permanent magnet(PM) flux-linkage, and electromotive-force(EMF) to be predicted with acceptable accuracy. However, large discrepancies are found in the predictions of armature inductances. Then, the basic model is modified by taking into account the localized saturation effect. As a result, the electromagnetic performance can be predicted more accurately, especially for the air-gap flux-density distributions. Furthermore, two improved models are proposed by adding bypass-bridge branches in stator network, to enhance the calculating accuracy of both saturated and unsaturated armature inductances. Finally, the predicted results from the four magnetic network models are validated by both 2D finite element analysis(FEA) and experimental measurements on a machine prototype. Overall, comparisons indicate that the model with bypass-bridge branches between stator teeth and back irons exhibits best performances. 展开更多
关键词 air-gap flux density finite element analysis flux switching nonlinear magnetic network permanent magnet
原文传递
Enhancement of Torque Density in Wound Field Switched Flux Machines with Partitioned Stators Using Assisted Ferrites 被引量:1
12
作者 Zhongze Wu Z.Q.Zhu +2 位作者 Shun Cai Wei Hua Wentao Zhang 《Chinese Journal of Electrical Engineering》 CSCD 2021年第3期42-51,共10页
In this paper,ferrites are applied in a partitioned stator wound field switched flux(PS-WFSF)machine to increase the air-gap flux density,and hence,the average electromagnetic torque and overload capability.Introducin... In this paper,ferrites are applied in a partitioned stator wound field switched flux(PS-WFSF)machine to increase the air-gap flux density,and hence,the average electromagnetic torque and overload capability.Introducing short-circuited ferrites in the inner stator in the PS-WFSF machine can increase the open-circuit phase fundamental back-EMF and average electromagnetic torque at a 60 W copper loss by 2.33%and 3.77%,respectively.Moreover,the proposed PS-WFSF machine with ferrites can exhibit a better overload capability than conventional PS-WFSF machines without ferrites,e.g.,a 7.36%torque increment can be achieved when the copper loss is 120 W.The torque increment mechanism is analyzed and verified using finite element(FE)analysis.Moreover,the demagnetization of the ferrites in the proposed machine under rated on-load and overload conditions is investigated.Both prototypes of the proposed PS-WFSF machine with ferrites and a conventional one without ferrite are built and tested to validate the analytical and FE analyses. 展开更多
关键词 Average electromagnetic torque ferrite flux switching partitioned stator switched flux torque improvement wound field
原文传递
Influence of Rotor Iron Bridge Position on DC-winding-induced Voltage in Wound Field Switched Flux Machine Having Partitioned Stators
13
作者 Zhongze Wu Z.Q.Zhu +3 位作者 Chao Wang Wei Hua Kai Wang Wentao Zhang 《Chinese Journal of Electrical Engineering》 CSCD 2021年第3期20-28,共9页
In this study,the influence of the position of the rotor iron bridge on the DC-winding-induced voltage pulsation in a partitioned stator wound field switched flux machine is investigated.Analytical and finite element(... In this study,the influence of the position of the rotor iron bridge on the DC-winding-induced voltage pulsation in a partitioned stator wound field switched flux machine is investigated.Analytical and finite element(FE)analyses show that both the open-circuit and on-load DC-winding-induced voltages can be minimized by positioning the rotor iron bridge adjacent to the inner air gap closer to the DC winding.This is due to a smoother inner air-gap magnetic reluctance while maintaining the average electromagnetic torque at 92.59%of the maximum value.The analyzed machine with the rotor iron bridge adjacent to the inner air gap is prototyped,and the experimental results validate the analytical and FE results. 展开更多
关键词 DC winding induced voltage flux switching iron bridge partitioned stator switched flux wound field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部