The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories ...The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.展开更多
The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynam...Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Based on a total of 16 indicators selected from the tourism and transport industries,an evaluation index system of the coupling and coordination development level of tourism and transport is constructed.The entropy va...Based on a total of 16 indicators selected from the tourism and transport industries,an evaluation index system of the coupling and coordination development level of tourism and transport is constructed.The entropy value method and the coupling coordination degree model are used to conduct an empirical study on the development level and coupling coordination level of the transport and tourism industries in Chengdu City from 2011 to 2020.The results show that,on the whole,the coupling coordination degree of transport and tourism in Chengdu is poor and has been in a state of mild to moderate dysfunction.The development level of tourism lagged behind the development of transport from 2011 to 2012,and the two were in a state of mild dysfunction.However,from 2013 onwards,the development level of tourism was prioritized over the development level of transport.This shift caused the coupling coordination degree of the two industries to decline sharply to 0.23305 in 2013.The development level of the tourism industry increased again,reaching 0.34206 in 2019,which marked an improvement.Consequently,the coordination degree of the transport and tourism industries evolved from moderate dislocation to mild dislocation.Finally,the results of the empirical research are analyzed,and corresponding suggestions are put forward to promote the sustainable growth of the transport and tourism industries in Chengdu City.These suggestions aim to improve the coupled and coordinated development level of the two industries.展开更多
In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LB...In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.展开更多
Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,base...Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,based on the flow field from numerical simulation.A fully developed flow pattern in the present simulation is compared with previous numerical results for validating the model and computational code.It is found that for the simulated particulate flow system,the particle mass concentration,number concentration,particle polydispersity, mean particle diameter and geometric standard deviation over cross-section increase with time.The distribution of particle mass concentration at different time is independent of the initial particle size.More particles are concen-trated at outer edge of the bend.Coagulation plays more important role at initial stage than that in the subsequent period.The increase of Reynolds number and initial particle size leads to the increase of particle number concentration.The particle polydispersity,mean particle diameter and geometric standard deviation increase with decreasing Reynolds number and initial particle size.展开更多
The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be diff...The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be different.It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks.Based on the knowledge of complex networks,the metro networks and the bus networks are selected as the objects,and the key nodes are identified by the node degree identification method,the neighbor node degree identification method,the weighted k-shell degree neighborhood identification method(KSD),the degree k-shell identification method(DKS),and the degree k-shell neighborhood identification method(DKSN).Take the network efficiency and the largest connected subgraph as the effective indicators.The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.展开更多
The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential,...The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.展开更多
Objective Oil-source faults have an important effect on reservoir formation and distribution in shallow formations with non- hydrocarbon generation in oil-rich fault-related basins (Jiang Youlu et al., 2015). Howev...Objective Oil-source faults have an important effect on reservoir formation and distribution in shallow formations with non- hydrocarbon generation in oil-rich fault-related basins (Jiang Youlu et al., 2015). However, the fault transporting capacity cannot be evaluated quantitatively at present. Taking the Zhanhua Sag in the Bohai Bay Basin as an example, this work analyzed the factors influencing the transporting capacity of the oil-source faults and proposed a quantitative method for evaluating their transporting capacity.展开更多
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical ha...Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.展开更多
Industries require planning in transporting their products from production centres to the users end with minimal transporting cost to maximize profit. This process is known as Transportation Problem which is used to a...Industries require planning in transporting their products from production centres to the users end with minimal transporting cost to maximize profit. This process is known as Transportation Problem which is used to analyze and minimize transportation cost. This problem is well discussed in operation research for its wide application in various fields, such as scheduling, personnel assignment, product mix problems and many others, so that this problem is really not confined to transportation or distribution only. In the solution procedure of a transportation problem, finding an initial basic feasible solution is the prerequisite to obtain the optimal solution. Again, development is a continuous and endless process to find the best among the bests. The growing complexity of management calls for development of sound methods and techniques for solution of the problems. Considering these factors, this research aims to propose an algorithm “Incessant Allocation Method” to obtain an initial basic feasible solution for the transportation problems. Several numbers of numerical problems are also solved to justify the method. Obtained results show that the proposed algorithm is effective in solving transportation problems.展开更多
In this paper, a new numerical method, the coupling method of spherical harmonic function spectral and streamline diffusion finite element for unsteady Boltzmann equation in the neutron logging field, is discussed. Th...In this paper, a new numerical method, the coupling method of spherical harmonic function spectral and streamline diffusion finite element for unsteady Boltzmann equation in the neutron logging field, is discussed. The convergence and error estimations of this scheme are proved. Its applications in the field of neutron logging show its effectiveness.展开更多
Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, ...Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, the physical and chemical properties of Earth’s constituents (e.g., silicate and carbonate minerals) are strongly affected by their immediate environment. In the past 30 years, there has been a tremendous amount of progress in both experimental techniques and theoretical modeling methods for material characterization under extreme conditions. These advancements have elevated our understanding of the properties of minerals, which is essential in order to achieve full comprehension of the formation of this planet and the origin of life on it. This article reviews recent computational techniques for predicting the behavior of materials under extreme conditions. This survey is limited to the application of the first-principles molecular dynamics (FPMD) method to the investigation of chemical and thermodynamic transport processes relevant to Earth Science.展开更多
In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor depos...In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. Such a field we can model by wave equations. The main contributions are to improve the standard discretization schemes of each part of the coupling equation. So we discuss an improvement with implicit Runge- Kutta methods instead of the Yee’s algorithm. Further we balance the solver method between the Maxwell and Transport equation.展开更多
Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu dop...Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu doping. Results indicate that Eu atoms tend to replace Ba atoms. With the increase of the Eu initial content, the carrier density increases and the carrier mobility decreases, which leads to an increase of the Seebeck coefficient. By contrast, the electrical conductivity decreases. Finally, the sample with Eu initial content of x = 0.75 behaves with excellent electrical properties, which shows a maximal power factor of 1.51 mW·m^-1K^-2 at 480K, and the highest ZT achieved is 0.87 near the temperature of 483K.展开更多
This study prepares a group of single crystalline β-Zn_4Sb_3 with Ge and Sn codoped by the Sn-flux method according to the nominal stoichiometric ratios of Zn_(4.4)Sb_3 Ge_xSn_3(x = 0–0.15). The prepared samples...This study prepares a group of single crystalline β-Zn_4Sb_3 with Ge and Sn codoped by the Sn-flux method according to the nominal stoichiometric ratios of Zn_(4.4)Sb_3 Ge_xSn_3(x = 0–0.15). The prepared samples possess a metallic luster surface with perfect appearance and large crystal sizes. The microscopic cracks or defects are invisible in the samples from the back-scattered electron image. Except for the heavily Ge-doped sample of x = 0.15, all the samples are single phase with space group R3c. The thermal analysis results show that the samples doped with Ge exhibit an excellent thermal stability.Compared with the polycrystalline Ge-substituted β-Zn_4Sb_3, the present single crystals have higher carrier mobility, and hence the electrical conductivity is improved, which reaches 7.48×10~4S·m^(-1) at room temperature for the x = 0.1 sample.The change of Ge and Sn contents does not improve the Seebeck coefficient significantly. Benefiting from the increased electrical conductivity, the sample with x = 0.075 gets the highest power factor of 1.45×10^(-3)W·m^(-1)·K^(-2) at 543 K.展开更多
Perovskite BiMnO_3 samples are successfully synthesized by the co-precipitation method at relatively low pressure and moderate temperature.The temperature dependences of resistivity are measured and systematically inv...Perovskite BiMnO_3 samples are successfully synthesized by the co-precipitation method at relatively low pressure and moderate temperature.The temperature dependences of resistivity are measured and systematically investigated.It is shown that the electrical resistivity increases sharply with the decrease of temperature above 210 K and the fitted results demonstrate that the thermally activated conduction model is the dominant conduction mechanism for the electron transport behaviors in this temperature region.A dual conducting mechanism,i.e.,the variable range hopping and thermal activated conduction,is suggested to be responsible for the transport behaviors of BiMnO_3 in the region of 180-200 K.Moreover,the resistivity increases slightly with the decrease of temperature below 180 K and the transport is governed by the variable range hopping mechanism.展开更多
Road transport is a flexible mode of transport and its importance in era of globalization increases. Management of road transport companies is, in this turbulent environment, exposed to many technical, legislative, an...Road transport is a flexible mode of transport and its importance in era of globalization increases. Management of road transport companies is, in this turbulent environment, exposed to many technical, legislative, and economic problems. Especially, the growing economic pressure leads to an urgent requirement of the manager and control system improvement. Activity-based costing (ABC) method is a very powerful tool to improve products, services, processes, and market strategies. ABC allows company management to understand what causes costs and how to manage them. Company under this scheme may get a glimpse of how efficiently a company converts the source value. The main objective of our research was to assess the possibility of application of the ABC method in a transport undertaking. ABC method as a fundamentally different view on the cost in the transport business helps to find the reasons of cost and thereby influences their levels to make better use of resources.. New managerial accounting methods aim to show management what information is needed, how and where this information can be obtained, and how they can be useful for the management of the company's proper planning, decision-making, and control. Information provided by management accounting is often a key factor in the analysis of alternative ways of solving problems. This article focuses on the transport enterprise management and helps to decide on the use of this method in business practice.展开更多
[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]F...[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]Four methods,including the statistical eigenvalues,depolarized arithmetic mean,frequency of erosion intensity and box-whisker plots were applied into calculation of sediment transport modulus in four small watersheds,and then the results of the methods were compared to to filter a method with the widest applicability and scientific validity. [Result] The statistical arithmetic mean and median could hardly represent the concentration and general level of multi-year sediment transport modulus. Although the depolarized arithmetic mean had the tendency of reflecting the general level of data,it lost the extreme value and its information for making decision. The frequency of erosion intensity grade reflected the distribution of data in intensity classification. Box-whisker plot could show the concentration,dispersion and the number of abnormal data. [Conclusion] Multiple methods can be combined to comprehensively and objectively characterize the multi-year sand transport modulus due to their advantages and disadvantages. Additionally,box-whisker plot has good objectivity and applicability in displaying the multi-year data of small watershed.展开更多
基金supported by the National Basic Research Program(973 Program)under Grant No.2007CB815100the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070290008
文摘The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
基金supported by the National Natural Science Foundation of China (Grant Nos.12164019,11991060,12088101,and U1930402)the Natural Science Foundation of Jiangxi Province of China (Grant No.20212BAB201017).
文摘Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金Chongqing University of Science and Technology Postgraduate Innovation Program Project(Project No.YKJCX2320902)。
文摘Based on a total of 16 indicators selected from the tourism and transport industries,an evaluation index system of the coupling and coordination development level of tourism and transport is constructed.The entropy value method and the coupling coordination degree model are used to conduct an empirical study on the development level and coupling coordination level of the transport and tourism industries in Chengdu City from 2011 to 2020.The results show that,on the whole,the coupling coordination degree of transport and tourism in Chengdu is poor and has been in a state of mild to moderate dysfunction.The development level of tourism lagged behind the development of transport from 2011 to 2012,and the two were in a state of mild dysfunction.However,from 2013 onwards,the development level of tourism was prioritized over the development level of transport.This shift caused the coupling coordination degree of the two industries to decline sharply to 0.23305 in 2013.The development level of the tourism industry increased again,reaching 0.34206 in 2019,which marked an improvement.Consequently,the coordination degree of the transport and tourism industries evolved from moderate dislocation to mild dislocation.Finally,the results of the empirical research are analyzed,and corresponding suggestions are put forward to promote the sustainable growth of the transport and tourism industries in Chengdu City.These suggestions aim to improve the coupled and coordinated development level of the two industries.
基金supported by the Foundation of National Key Laboratory of Reactor System Design Technology(No.HT-LW-02-2014003)the State Key Program of National Natural Science of China(No.51436009)
文摘In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.
基金Supported by the Major Program of the National Natural Science Foundation of China(10632070)
文摘Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,based on the flow field from numerical simulation.A fully developed flow pattern in the present simulation is compared with previous numerical results for validating the model and computational code.It is found that for the simulated particulate flow system,the particle mass concentration,number concentration,particle polydispersity, mean particle diameter and geometric standard deviation over cross-section increase with time.The distribution of particle mass concentration at different time is independent of the initial particle size.More particles are concen-trated at outer edge of the bend.Coagulation plays more important role at initial stage than that in the subsequent period.The increase of Reynolds number and initial particle size leads to the increase of particle number concentration.The particle polydispersity,mean particle diameter and geometric standard deviation increase with decreasing Reynolds number and initial particle size.
基金supported by the National Natural Science Foundation of China(Grant No.61961019)the Youth Key Project of the Natural Science Foundation of Jiangxi Province of China(Grant No.20202ACBL212003).
文摘The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be different.It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks.Based on the knowledge of complex networks,the metro networks and the bus networks are selected as the objects,and the key nodes are identified by the node degree identification method,the neighbor node degree identification method,the weighted k-shell degree neighborhood identification method(KSD),the degree k-shell identification method(DKS),and the degree k-shell neighborhood identification method(DKSN).Take the network efficiency and the largest connected subgraph as the effective indicators.The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.
基金supported by the National Natural Science Foundation of China (Grant No. 51006083)the China Postdoctoral Science Foundation (Grant No. 20110491658)the Fundamental Research Funds for the Central Universities
文摘The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.
基金granted by the National Natural Science Foundation of China(grant No.41672131)Fundamental Research Funds for the Central Universities(grant No.16CX06045A)
文摘Objective Oil-source faults have an important effect on reservoir formation and distribution in shallow formations with non- hydrocarbon generation in oil-rich fault-related basins (Jiang Youlu et al., 2015). However, the fault transporting capacity cannot be evaluated quantitatively at present. Taking the Zhanhua Sag in the Bohai Bay Basin as an example, this work analyzed the factors influencing the transporting capacity of the oil-source faults and proposed a quantitative method for evaluating their transporting capacity.
基金Supported by pre-research fund of State Key Laboratory (51479080201 JW0802)
文摘Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
文摘Industries require planning in transporting their products from production centres to the users end with minimal transporting cost to maximize profit. This process is known as Transportation Problem which is used to analyze and minimize transportation cost. This problem is well discussed in operation research for its wide application in various fields, such as scheduling, personnel assignment, product mix problems and many others, so that this problem is really not confined to transportation or distribution only. In the solution procedure of a transportation problem, finding an initial basic feasible solution is the prerequisite to obtain the optimal solution. Again, development is a continuous and endless process to find the best among the bests. The growing complexity of management calls for development of sound methods and techniques for solution of the problems. Considering these factors, this research aims to propose an algorithm “Incessant Allocation Method” to obtain an initial basic feasible solution for the transportation problems. Several numbers of numerical problems are also solved to justify the method. Obtained results show that the proposed algorithm is effective in solving transportation problems.
文摘In this paper, a new numerical method, the coupling method of spherical harmonic function spectral and streamline diffusion finite element for unsteady Boltzmann equation in the neutron logging field, is discussed. The convergence and error estimations of this scheme are proved. Its applications in the field of neutron logging show its effectiveness.
文摘Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, the physical and chemical properties of Earth’s constituents (e.g., silicate and carbonate minerals) are strongly affected by their immediate environment. In the past 30 years, there has been a tremendous amount of progress in both experimental techniques and theoretical modeling methods for material characterization under extreme conditions. These advancements have elevated our understanding of the properties of minerals, which is essential in order to achieve full comprehension of the formation of this planet and the origin of life on it. This article reviews recent computational techniques for predicting the behavior of materials under extreme conditions. This survey is limited to the application of the first-principles molecular dynamics (FPMD) method to the investigation of chemical and thermodynamic transport processes relevant to Earth Science.
文摘In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. Such a field we can model by wave equations. The main contributions are to improve the standard discretization schemes of each part of the coupling equation. So we discuss an improvement with implicit Runge- Kutta methods instead of the Yee’s algorithm. Further we balance the solver method between the Maxwell and Transport equation.
基金Supported by the National Natural Science Foundation of China under Grant No 51262032
文摘Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu doping. Results indicate that Eu atoms tend to replace Ba atoms. With the increase of the Eu initial content, the carrier density increases and the carrier mobility decreases, which leads to an increase of the Seebeck coefficient. By contrast, the electrical conductivity decreases. Finally, the sample with Eu initial content of x = 0.75 behaves with excellent electrical properties, which shows a maximal power factor of 1.51 mW·m^-1K^-2 at 480K, and the highest ZT achieved is 0.87 near the temperature of 483K.
基金Project supported by the National Natural Science Foundation of China(Grant No.51262032)
文摘This study prepares a group of single crystalline β-Zn_4Sb_3 with Ge and Sn codoped by the Sn-flux method according to the nominal stoichiometric ratios of Zn_(4.4)Sb_3 Ge_xSn_3(x = 0–0.15). The prepared samples possess a metallic luster surface with perfect appearance and large crystal sizes. The microscopic cracks or defects are invisible in the samples from the back-scattered electron image. Except for the heavily Ge-doped sample of x = 0.15, all the samples are single phase with space group R3c. The thermal analysis results show that the samples doped with Ge exhibit an excellent thermal stability.Compared with the polycrystalline Ge-substituted β-Zn_4Sb_3, the present single crystals have higher carrier mobility, and hence the electrical conductivity is improved, which reaches 7.48×10~4S·m^(-1) at room temperature for the x = 0.1 sample.The change of Ge and Sn contents does not improve the Seebeck coefficient significantly. Benefiting from the increased electrical conductivity, the sample with x = 0.075 gets the highest power factor of 1.45×10^(-3)W·m^(-1)·K^(-2) at 543 K.
基金Supported by the Key Research Project of Shaanxi University of Science and Technology under Grant Nos 2016GBJ-12 and2016BJ-59
文摘Perovskite BiMnO_3 samples are successfully synthesized by the co-precipitation method at relatively low pressure and moderate temperature.The temperature dependences of resistivity are measured and systematically investigated.It is shown that the electrical resistivity increases sharply with the decrease of temperature above 210 K and the fitted results demonstrate that the thermally activated conduction model is the dominant conduction mechanism for the electron transport behaviors in this temperature region.A dual conducting mechanism,i.e.,the variable range hopping and thermal activated conduction,is suggested to be responsible for the transport behaviors of BiMnO_3 in the region of 180-200 K.Moreover,the resistivity increases slightly with the decrease of temperature below 180 K and the transport is governed by the variable range hopping mechanism.
文摘Road transport is a flexible mode of transport and its importance in era of globalization increases. Management of road transport companies is, in this turbulent environment, exposed to many technical, legislative, and economic problems. Especially, the growing economic pressure leads to an urgent requirement of the manager and control system improvement. Activity-based costing (ABC) method is a very powerful tool to improve products, services, processes, and market strategies. ABC allows company management to understand what causes costs and how to manage them. Company under this scheme may get a glimpse of how efficiently a company converts the source value. The main objective of our research was to assess the possibility of application of the ABC method in a transport undertaking. ABC method as a fundamentally different view on the cost in the transport business helps to find the reasons of cost and thereby influences their levels to make better use of resources.. New managerial accounting methods aim to show management what information is needed, how and where this information can be obtained, and how they can be useful for the management of the company's proper planning, decision-making, and control. Information provided by management accounting is often a key factor in the analysis of alternative ways of solving problems. This article focuses on the transport enterprise management and helps to decide on the use of this method in business practice.
基金Supported by National Key R&D Plan Topics (2016YFC0503705)Major Project of High-resolution Earth Observation System (08 Y30B07 900113/15)Dynamic Monitoring Project of National Water and Soil Loss and Optimization Layout Project of National Water and Soil Conservation Monitoring Point (126216229000200002)。
文摘[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]Four methods,including the statistical eigenvalues,depolarized arithmetic mean,frequency of erosion intensity and box-whisker plots were applied into calculation of sediment transport modulus in four small watersheds,and then the results of the methods were compared to to filter a method with the widest applicability and scientific validity. [Result] The statistical arithmetic mean and median could hardly represent the concentration and general level of multi-year sediment transport modulus. Although the depolarized arithmetic mean had the tendency of reflecting the general level of data,it lost the extreme value and its information for making decision. The frequency of erosion intensity grade reflected the distribution of data in intensity classification. Box-whisker plot could show the concentration,dispersion and the number of abnormal data. [Conclusion] Multiple methods can be combined to comprehensively and objectively characterize the multi-year sand transport modulus due to their advantages and disadvantages. Additionally,box-whisker plot has good objectivity and applicability in displaying the multi-year data of small watershed.